Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211058890> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4211058890 endingPage "245" @default.
- W4211058890 startingPage "237" @default.
- W4211058890 abstract "Free Access References Marc Souris, Marc SourisSearch for more papers by this author Book Author(s):Marc Souris, Marc SourisSearch for more papers by this author First published: 06 March 2019 https://doi.org/10.1002/9781119528203.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abrial D., Charras-Garrido M., DE GOER DE Herve J. et al., “Méthode de classification pour la cartographie du risque basée sur les champs de Markov cachés discrets”, Journées d'Animation Scientifique du Département Santé Animale, Cap d'Agde, available at: http://prodinra.inra.fr/record/257177, 2013. Albert D., Gesler W., Levergood B., Spatial Analysis, GIS, and Remote Sensing Applications in the Health Sciences, Ann Arbor Press, 2000. Ancelle T., Epidémiologie et Statistique, Editions Maloine, 2002. Anselin L., Bera A.K., “ Spatial dependence in spatial regression model, with an introduction to spatial econometrics”, in A. Ullah , D.E. Giles (eds), Handbook of Applied Economic Statistics, pp. 237– 289, Marcel Decker, New York, 1988. Anselin L., “Local indicators of spatial association – LISA”, Geographical Analysis, vol. 27, pp. 93– 115, 1995. Anselin L., “ The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association”, in M. Fischer , H. Scholten , D. Unwin (eds), Spatial Analytical Perspectives on GIS , Taylor and Francis, London, pp. 111– 125, 1996. Auchincloss A.H., Diez-Roux A., “A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health”, American Journal of Epidemiology, vol. 168, no. 1, 2008. Bachi R., “Standard distance measure and related methods for spatial analysis”, Papers in Regional Sciences, vol. 10, no. 1, pp. 73– 132, 1963. Bartlett M.S., The Statistical Analysis of Spatial Pattern, Chapman and Hall, Andover, 1975. Becerra S., “Vulnérabilité, risques et environnement : l'itinéraire chaotique d'un paradigme sociologique contemporain”, VertigO, vol. 12, no. 1, available at: http://vertigo.revues.org/11988; doi: 10.4000/vertigo.11988, 2012. Beguin M., Pumain D., La représentation des données géographiques – Statistiques et cartographie, Armand Colin, Paris, 2000. Bertin J., Sémiologie graphique, Mouton/Gauthiers-Villars, Paris, 1967. Besag J., Newell J., “The detection of clusters in rare diseases”, Journal of the Royal Statistical Society, Series A, vol. 154, pp. 143– 155, 1991. Bivand R., Pebesma E.J., Gómez-Rubio V., Applied Spatial Data Analysis Using R, Springer, Heidelberg, 2008. Bivand R., Altman M., Anselin L. et al., Package ‘spdep’, available at: https://cran.r-project.org/web/packages/spdep/spdep.pdf, 2017. Bordin P., SIG, concepts, outils et données, Hermès, 2002. Bouyer J., Hémon D., Cordier S. et al., Epidémiologie, principes et méthodes quantitatives, Inserm, 1993. Bowman A.W., Azzalini A., Applied Smoothing Techniques for Data Analysis, Oxford University Press, London, 1997. Breslow N.E., Day N.E., Statistical Methods in Cancer Research, vol. I & II, WHO, International Agency for Research on Cancer, 1987. Brunet R., La carte, mode d'emploi, Fayard/Reclus, Paris, 1987. Brunsdon C., Fotheringham S., Charlton M., “Geographically weighted regression”, Journal of the Royal Statistical Society: Series D (The Statistician), vol. 47, pp. 431– 443, 1998. Cheng T., Haworth J., Wang J., “Spatio-temporal autocorrelation of road network data”, Journal of Geographical Systems, vol. 14, no. 4, pp. 1– 25, 2011. Clayton D., Kaldor J., “Empirical Bayes estimates of age-standardized relative risks for use in disease mapping”, Biometrics, vol. 43, no. 3, pp. 671– 681, 1987. Cliff A.D., Ord J.K., “ The problem of spatial autocorrelation”, in A.J. Scott (ed.), Studies in Regional Science, Pion, London, pp. 25– 55, 1969. Cliff A.D., Ord J.K., Spatial Processes: Models and Applications, Pion Limited, 1981. Cressie N.A., Statistics for Spatial Data, John Wiley & Sons, Inc., 1993. Cressie N.A., “Change of support and the modifiable areal unit problem”, Geographical Systems, vol. 3, nos 2–3, pp. 159– 180, 1996. Cuzick J., Edwards R., “Spatial clustering for inhomogeneous populations”, Journal of the Royal Statistical Society, Series B, vol. 52, pp. 73– 104, 1990. Dean C.B., “Testing for overdispersion in Poisson and Binomial regression models”, JASA, vol. 87, no. 418, pp. 451– 457, 1992. Diekmann O., Heesterbeek J.A.P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, 2000. Diggle P.J., Statistical Analysis of Spatial Point Patterns, Academic Press, London, 1983. Diggle P.J., Tawn J.A., Moyeed RA., “Model-based geostatistics”, Applied Statistics, vol. 47, Part 3, pp. 299– 350, 1998. Diggle P.J., Statistical Analysis of Spatial Point Patterns, Hodder Arnold Publishers, London, 2003. Dixon P.M., “Testing spatial segregation using a nearest neighbor contingency table”, Ecology, vol. 75, pp. 1940– 1948, 1994. Dixon P.M., “Nearest neighbour methods”, Encyclopedia of Environmetrics, vol. 3, John Wiley & Sons, pp. 1370– 1383, 2002. Dormann C., Mcpherson J., Araújo M. et al., “Methods to account for spatial autocorrelation in the analysis of species distributional data: a review”, Ecography, vol. 30, pp. 609– 628, 2007. Droesbeke J.J., Lejeune M., Saporta M., Analyse statistique des données spatiales, Technip Editions, 2006. Elith J., Leathwick J.R., Hastie T., “A working guide to boosted regression trees”, Journal of Animal Ecology, vol. 77, pp. 802– 813, 2008. Elliot P., Cuzick J., English D. et al., Geographical & Environmental Epidemiology, Methods for Small-area Studies, Oxford, 1992. Elliot P., Wakefield J., Best N. et al., Spatial Epidemiology, Methods and Applications, Oxford, 2000. Fotheringham A.S., Brunsdon C., Charlton M., Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Wiley, 2002. Fotheringham A.S., Rogerson PA (eds), The Sage Handbook of Spatial Analysis, Sage, London and Los Angeles, 2009. Fotheringham A.S., Crespo R., Yao J., “Geographical and temporal weighted regression (GTWR)”, Geographical Analysis, vol. 47, pp. 431– 452, 2015. Le Gallo J., “Hétérogénéité spatiale : principes et méthodes”, Économie & Prévision, no. 162, pp. 151– 172, 2004. Gatrell A.C., Bailey T.C., Diggle P.J. et al., “Spatial point pattern analysis and its application in geographical epidemiology”, Transactions of the Institute of British Geography, vol. 21, pp. 256– 274, 1996. Geary R.C., “The contiguity ratio and statistical mapping”, The Incorporated Statistician, vol. 5, pp. 115– 145, 1954. Gelfand A., Diggle P., Fuentes M. et al., Handbook of Spatial Statistics, Chapman & Hall/CRC, 2010. Getis A., Ord J.K., “ Local spatial statistics: an overview”, in P. Longley , M. Batty (eds), Spatial Analysis: Modelling in a GIS Environment, Geoinformation International, Cambridge, pp. 261– 277, 1996. Gini C., “Measurement of inequality of income”, Economic Journal, vol. 31, pp. 22– 43, 1921. Gotway C., Young L., “Combining incompatible spatial data”, Journal of the American Statistical Association, vol. 97, pp. 632– 648, 2002. Grasland C., “Lʼerreur écologique en géographie”, Feuilles de Géographie, vol. I, no. 1, 1994. Hardisty F., Klipper A., “Analyzing spatio-temporal autocorrelation with LISTA-Viz”, International Journal of Geographic Information Sciences, vol. 24, no. 10, pp. 1515– 1526, 2010. Hastie T.J., Tibshirani R., Generalized Additive Models, Chapman and Hall, London, 1990. Hassarangsee S., Tripathi N., Souris M., Spatial Pattern Detection of Tuberculosis: A Case Study of Si Sa Ket Province, Thailand, IJERPH, 12 16005- 16018, 2015. Hassarangsee S., Dissertation for the Degree of Doctor of Technical Science, Asian Institute of Technology, Thailand, 2018. Herbreteau V., Salem G., Souris M. et al., “Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promise to lasting frustration”, Health and Place, vol. 13, pp. 400– 403, 2007. Huang L., Kulldorff M., Gregorio D., A Spatial Scan Statistic for Survival data, Biometrics, Wiley Online Library, 2007. Isard W., Methods of Regional Analysis: An Introduction to Regional Science, The MIT Press, Cambridge, 1960. Jung I., Kulldorff K., Klassen A.C., “A spatial scan statistic for ordinal data”, Statistics in Medicine, vol. 26, pp. 1594– 1607, 2006. Jung I., Kulldorff M., Otukei J., “A spatial scan statistic for multinomial data”, Statistics in Medicine, vol. 29, pp. 1910– 1918, 2010. Kleinbaum D.G., Klein M., Statistics for Biology and Health, Springer, 1994. Kneib T., Mixed model based inference in structured additive regression model, Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig-Maximilians-Universitä, Munich, 2005. Knox G., “The detection of space-time interactions”, Applied Statistics, vol. 13, pp. 25– 29, 1964. Kulldorff M., Nagarwalla N., “Spatial disease clusters: detection and inference”, Statistics in Medicine, vol. 14, no. 8, pp. 799– 819, 1995. Kulldorff M., “A spatial scan statistic”, Communications in Statistics: Theory and Methods, vol. 26, no. 6, pp. 1481– 1496, 1997. Kulldorf M., “Tests of spatial randomness adjusted for an inhomogeneity”, Journal of the American Statistical Association, vol. 101, no. 475, pp. 1289– 1305, 2006. Kulldorf M., Haung L., Konty K., “A scan statistic for continuous data based on the normal probability model”, International Journal of Health Geography, vol. 8, 2009. Lang S., Umlauf N., Wechselberger P. et al., “Multilevel structured additive regression”, Statistics and Computing, vol. 24, 2014. Larmarange J., Vallo R., Yaro S. et al., Méthodes pour cartographier les tendances régionales de la prévalence du VIH à partir des Enquêtes Démographiques et de Santé (EDS), Cybergeo: European Journal of Geography, http://cybergeo.revues.org/23782, 2011. Lawson A.B., Biggeri A., Böhning D. et al. (eds), Disease Mapping and Risk Assessment for Public Health, John Wiley & Sons Ltd., 1999. Lawson A.B., Statisticial Methods in Spatial Epidemiology, Wiley, 2001. Lee S.I., “Developing a bivariate spatial association measure: an integration of Pearson's r and Moran's I”, Journal of Geographical Systems, vol. 3, no. 4, pp. 369– 385, 2001. De Lepper J.C., Scholten H.J., Stern R.M., “The added value of geographical Information systems in public and environemental health”, The Geojournal Library, vol. 24, 1994. Van Lieshout M.N.M., Baddeley A.J., “A nonparametric measure of spatial interaction in point patterns”, Statistica Neerlandica, vol. 50, pp. 344– 361, 1996. Maguire D.J., Batty M., Goodchild M., GIS, Spatial Analysis and Modeling, ESRI Press, 2005. Mantel N., “The detection of disease clustering and a generalized regression approach”, Cancer Research, vol. 27, no. 2, pp. 209– 220, 1967. Manly B.F.J., Multivariate Statistical Methods, A Primer, Chapman & Hall, 1986. Maneerat S., Modélisation à base d'agents des risques vectoriels en milieux urbains : exemple d'Aedes aegypti, vecteur de la dengue, à Delhi (Inde), PhD Thesis, Université de Rouen, 2016. Massé R., SAINT-ARNAUD J., Ethique et santé publique, Presses Université de Laval, 2003. Mckenzie F.E., Samba E.M., “The role of mathematical modeling in evidence-based malaria control”, The American Journal of Tropical Medicine and Hygiene, vol. 71, pp. 94– 96, 2004. Miller R.G., Simultaneous Statistical Inference, Springer Verlag, 1996. Mollié A., “ Bayesian and Empirical Bayes approaches to disease mapping”, in A. Lawson , A. Biggeri , D. Bohning (eds), Disease Mapping and Risk Assessment, Wiley, pp. 15– 29, 1999. Monmonier M.S., Comment faire mentir les cartes, Flammarion, 1993. Moran P., “The interpretation of statistical maps”, Journal of the Royal Statistical Society, Series B, vol. 10, pp. 243– 251, 1948. Mrkvička T., Myllymäki M., Hahn U., “ Multiple monte carlo testing with applications in spatial point processes”, available at: http://arxiv.org/abs/1506.01646, 2015. Nakaya T., “ Semiparametric geographically weighted generalised linear modelling: the concept and implementation using GWR4 ”, in C. Brunsdon , A. Singleton (eds), Geocomputation: A Practical Primer, Sage Publication, pp. 201– 220, 2015. Oms , Rapport sur la santé dans le monde 2002, chapitre 2, Organisation Mondiale de la Santé, 2002. Openshaw S., Taylor P., “ A million or so correlation coefficients: three experiments on the modifiable areal unit problem”, in N. Wrigley (ed.), Statistical Applications in the Spatial Sciences, Pion, London, pp. 127– 144, 1979. Openshaw S., Charlton M., Wymer C. et al., “A mark I geographical analysis machine for the automated analysis of point data sets”, International Journal of Geographical Information Systems, vol. 1, pp. 335– 358, 1987. Penttinen A., Stoyan D., Henttonen H.M., “Marked point processes in forest statistics”, Forest Science, vol. 38, pp. 806– 824, 1992. Perry G., Miller B., Enright N., “A comparison of methods for the statistical analysis of spatial point patterns in plant ecology”, Plant Ecology, vol. 187, pp. 59– 82, 2006. Pfeiffer D., Robinson T., Stevenson M. et al., Spatial Analysis in Epidemiology, Oxford University Press, 2008. Pielou E.C., “Segregation and symmetry in two-species populations as studied by nearestneighbor relationships”, Journal of Ecology, vol. 49, pp. 255– 269, 1961. Potthoff R.F., Whittinghill M., “Testing for homogeneity: I. The Binomial and Multinomial distributions”, Biometrika, vol. 53, pp. 167– 182, 1996. Potthoff R.F., Whittinghill M., “Testing for homogeinity: II. The Poisson distribution”, Biometrika, vol. 53, pp. 183– 190, 1996. Pumain D., Saint-Julien T., Lʼanalyse spatiale, localisations dans l'espace, Armand Colin, 1997. Reiner R.C., Perkins T.A., Barker C.M. et al., “A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010”, Journal of The Royal Society Interface, vol. 10, 20120921, 2013. Rican S., “Cartographie des données épidémiologiques”, Cahier Santé, vol. 8, pp. 461– 470, 1998. Ripley B.D., Spatial Statistics, John Wiley & Sons, 1981. Rogerson P.A., “Surveillance systems for monitoring the development of spatial patterns”, Statistics in Medicine, vol. 16, pp. 2081– 2093, 1997. Saaty T.L., “Decision making with the analytic hierarchy process”, International Journal of Services Sciences, vol. 1, no. 1, 2008. Samuels S.J., Beaumont J.J., Breslow N.E., “Power and detectable risk of seven tests for SMR”, American Journal of Epidemiology, vol. 133, pp. 1191– 1197, 1991. Sanders L., Models in Spatial Analysis, ISTE, London, 2007. SaTScan User Guide, SaTScan software manual, available at: www.satscan.org, 2018. SavGIS., Manuels et documentation, available at: www.savgis.org, 2017. Shabenberger O., Gotway C., Statistical Methods for Spatial Data Analysis, Chapman & Hall, 2005. Shekhar S., Huang Y., “ Discovering Spatial Co-location Patterns: A summary of Results”, Proceedings of 7th International Symposium on Spatial and Temporal Databases, 2001. Snow J., On the Mode of Communication of Cholera, Churchill Livingstone, 1854. Souris M., La construction d'un système d'information géographique, principes et algorithms, PhD Thesis, Université de La Rochelle, 2002. Souris M., “Les contraintes d'intégrité spatiale”, in S. Servigne , T. Libourel (eds), Fondements des bases de données spatiales, Hermès, pp. 99– 123, 2006. Souris M., Gonzalez J.P., “Dynamique spatiale et temporelle de l'émergence du virus de l'influenza aviaire hautement pathogène. L'exemple des vagues épizootiques en Thaïlande”, Les maladies émergentes chez le végétal, l'animal et l'homme. Enjeux scientifiques et sociétaux, stratégies de détection et d'analyse, Editions QUAE, 2010. Souris M., Gonzalez J.P., Shanmugasundaram J. et al., “Retrospective space-time analysis of H5N1 Avian Influenza emergence in Thailand”, International Journal of Health Geographics, vol. 9, no. 3, 2010. Souris M., Bichaud L., “Statistical methods for bivariate spatial analysis in marked points. Examples in spatial epidemiology”, Journal of Spatial and Spatio-temporal Epidemiology, vol. 2, no. 4, pp. 227– 234, 2011. Souris M., Selenic D., Khaklang S. et al., “Poultry farms vulnerability and risk of Avian Influenza re-emergence in Thailand”, International Journal of Environmental Research and Public Health, vol. 11, no. 1, pp. 934– 951, 2014. Souris M., Marcombe S., Laforet J. et al., “Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos”, PLoS ONE, vol. 12, no. 5, e0177274 p., 2017. Stone R.A., “Investigating of excess environmental risks around putative sources: Statistical problems and a proposed test”, Statistics in Medicine, vol. 7, pp. 649– 660, 1988. Stoyan D., Kendall W.S., Mekce J., Stochastic Geometry and Its Applications, John Wiley & Sons, Chichester, 1995. Stoyan D., Penttinen A., “Recent applications of point process methods in forestry statistics”, Statistical Science, vol. 15, no. 1, pp. 61– 73, 2000. Tango T., “A class of tests for detecting general and focused clustering of rare diseases”, Statistics in Medicine, vol. 14, pp. 2323– 2334, 1995. Tango T., “Score tests for detecting excess risks around putative sources”, Statistics in Medicine, vol. 21, pp. 497– 514, 2002. Theil H., Finezza A.J., “A note on the measurement of racial integration of schools by means of informational concepts”, Journal of Mathematical Sociology, vol. 1, no. 2, pp. 187– 194, 1971. Tobler W., “A computer movie simulating urban growth in the Detroit region”, Economic Geography Supplement, vol. 46, no. 2, pp. 234– 240, 1970. Trzaska S., Schnarr E., A Review of Downscaling Methods for Climate Change Projections, USAID, 2014. Vigneron E., Statistique et géographie, PUF, 1997. Waller L., Lawson A., “The power of focused tests to detect disease clustering”, Statistics in Medicine, vol. 14, pp. 2291– 2308, 1995. Waller L., “Statistical power and design of focused clustering studies”, Statistics in Medicine, vol. 15, pp. 765– 782, 1996. Waller L., Gotway C.A., Applied Spatial Statistics for Public Health Data, Wiley, Hoboken, 2004. Wartenberg D., “Multivariate spatial correlation: a method for exploratory geographical analysis”, Geographical Analysis, vol. 17, pp. 263– 283, 1985. Webster R., Oliver M.A., Statistical Methods in Soil and Land Resource Survey, Oxford University Press, Oxford, 1990. Worboys M.F., GIS, a Computer Perspective, Taylor and Francis, 1995. Wu B., Li R., Huang B., “A geographically and temporally weighted autoregressive model with application to housing prices”, International Journal of Geographical Information Science, vol. 28, pp. 1186– 1204, 2014. Xie Z., Tan J., “Kernel density estimation of traffic accidents in a network space”, Computers, Environment and Urban Systems, vol. 32, no. 5, pp. 396– 406, 2008. Yamada I., Thill J.C., “Local indicators of network-constrained clusters in spatial point patterns”, Geographical Analysis, vol. 39, pp. 268– 292, 2007. Yu D., “Exploring spatiotemporally varying regressed relationships: the geographically weighted panel regression analysis”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, Part II, pp. 134– 139, 2010. Yu D., “Understanding regional development mechanisms in greater Beijing area, China, 1995–2001, from a Spatial–Temporal Perspective”, GeoJournal, vol. 79, pp. 195– 207, 2014. Epidemiology and Geography: Principles, Methods and Tools of Spatial Analysis ReferencesRelatedInformation" @default.
- W4211058890 created "2022-02-13" @default.
- W4211058890 date "2019-03-06" @default.
- W4211058890 modified "2023-09-25" @default.
- W4211058890 title "References" @default.
- W4211058890 cites W1515526911 @default.
- W4211058890 cites W1599710294 @default.
- W4211058890 cites W1757067888 @default.
- W4211058890 cites W1829241487 @default.
- W4211058890 cites W1956515227 @default.
- W4211058890 cites W1970143540 @default.
- W4211058890 cites W1973749534 @default.
- W4211058890 cites W1974992598 @default.
- W4211058890 cites W1979683229 @default.
- W4211058890 cites W1990158612 @default.
- W4211058890 cites W1991694179 @default.
- W4211058890 cites W2000557274 @default.
- W4211058890 cites W2002151188 @default.
- W4211058890 cites W2010257382 @default.
- W4211058890 cites W2017475010 @default.
- W4211058890 cites W2017755807 @default.
- W4211058890 cites W2034960640 @default.
- W4211058890 cites W2037223867 @default.
- W4211058890 cites W2045066934 @default.
- W4211058890 cites W2048100198 @default.
- W4211058890 cites W2049826772 @default.
- W4211058890 cites W2050835037 @default.
- W4211058890 cites W2053538370 @default.
- W4211058890 cites W2057001967 @default.
- W4211058890 cites W2064738366 @default.
- W4211058890 cites W2070381999 @default.
- W4211058890 cites W2073689917 @default.
- W4211058890 cites W2075379868 @default.
- W4211058890 cites W2080348715 @default.
- W4211058890 cites W2084391800 @default.
- W4211058890 cites W2088119840 @default.
- W4211058890 cites W2100083157 @default.
- W4211058890 cites W2102822092 @default.
- W4211058890 cites W2103419912 @default.
- W4211058890 cites W2106754851 @default.
- W4211058890 cites W2113656684 @default.
- W4211058890 cites W2118898434 @default.
- W4211058890 cites W2119204068 @default.
- W4211058890 cites W2122027706 @default.
- W4211058890 cites W2130761473 @default.
- W4211058890 cites W2135695572 @default.
- W4211058890 cites W2136502970 @default.
- W4211058890 cites W2143339960 @default.
- W4211058890 cites W2143826805 @default.
- W4211058890 cites W2144443219 @default.
- W4211058890 cites W2146464256 @default.
- W4211058890 cites W2153221343 @default.
- W4211058890 cites W2159782192 @default.
- W4211058890 cites W2170565777 @default.
- W4211058890 cites W2170712385 @default.
- W4211058890 cites W2207173883 @default.
- W4211058890 cites W2282743468 @default.
- W4211058890 cites W2317739826 @default.
- W4211058890 cites W2334957632 @default.
- W4211058890 cites W2396871564 @default.
- W4211058890 cites W2399767476 @default.
- W4211058890 cites W2478338686 @default.
- W4211058890 cites W2494084875 @default.
- W4211058890 cites W2496675188 @default.
- W4211058890 cites W2581907372 @default.
- W4211058890 cites W2612906983 @default.
- W4211058890 cites W2908646573 @default.
- W4211058890 cites W4237661782 @default.
- W4211058890 cites W4238402351 @default.
- W4211058890 cites W588769813 @default.
- W4211058890 cites W645362890 @default.
- W4211058890 doi "https://doi.org/10.1002/9781119528203.refs" @default.
- W4211058890 hasPublicationYear "2019" @default.
- W4211058890 type Work @default.
- W4211058890 citedByCount "0" @default.
- W4211058890 crossrefType "other" @default.
- W4211058890 hasBestOaLocation W42110588901 @default.
- W4211058890 hasConcept C41008148 @default.
- W4211058890 hasConceptScore W4211058890C41008148 @default.
- W4211058890 hasLocation W42110588901 @default.
- W4211058890 hasOpenAccess W4211058890 @default.
- W4211058890 hasPrimaryLocation W42110588901 @default.
- W4211058890 hasRelatedWork W1596801655 @default.
- W4211058890 hasRelatedWork W2130043461 @default.
- W4211058890 hasRelatedWork W2350741829 @default.
- W4211058890 hasRelatedWork W2358668433 @default.
- W4211058890 hasRelatedWork W2376932109 @default.
- W4211058890 hasRelatedWork W2382290278 @default.
- W4211058890 hasRelatedWork W2390279801 @default.
- W4211058890 hasRelatedWork W2748952813 @default.
- W4211058890 hasRelatedWork W2899084033 @default.
- W4211058890 hasRelatedWork W2530322880 @default.
- W4211058890 isParatext "false" @default.
- W4211058890 isRetracted "false" @default.
- W4211058890 workType "other" @default.