Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211060941> ?p ?o ?g. }
- W4211060941 endingPage "310" @default.
- W4211060941 startingPage "265" @default.
- W4211060941 abstract "Annual Review of Information Science and TechnologyVolume 36, Issue 1 p. 265-310 Knowledge Discovery Data mining Gerald Benoît, Gerald Benoît University of KentuckySearch for more papers by this author Gerald Benoît, Gerald Benoît University of KentuckySearch for more papers by this author First published: 01 February 2005 https://doi.org/10.1002/aris.1440360107Citations: 29Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography Abiteboul, S. (1997). Object database support for digital libraries. Retrieved March 1, 2001, from the World Wide Web: http://rocq.inria.fr/˜abitebou/pub/dl97.ps Adriaans, P. D., & Zantinge, D. (1997). Data mining. Reading, MA: Addison-Wesley. Aggarwal, C. C., & Yu, P. S. (1999). Data mining techniques for associations, clustering and classification. In N. Zhong & L. Zhou (Eds.), Methodologies for Knowledge Discovery and Data Mining, PAKDD-99 (pp. 13–23). Berlin: Springer. Agrawal, R., & Shafer, J. C. (1996). Parallel mining of association rules: Design, implementation and experience. IBM Research Report RJ 10004. IEEE Transactions on Knowledge and Data Engineering, 8, 962–969. Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In W. Chen, J. F. Naughton & P. A. Bernstein (Eds.), Proceedings of the ACM-SIGMOD 2000 Conference on Management of Data. SIGMOD Record 29, 439–450. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In M. Jarke & C. Zaniolo (Eds.), Proceedings of the 20th International Conference on Very Large Data Bases, VLDB'94 (pp. 487–499). San Francisco: Morgan Kaufmann. Agrawal, R., Imielinski, T., & Swami, A. (1993). Database mining: A performance perspective. IEEE Transactions on Knowledge Data Engineering, 5, 914–925. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Inkeri Verkamo, A. (1996). Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining. Menlo Park, CA: AAAI Press. Ahonen, H., Heinonen, O., Klemettinen, M., & Inkeri Verkamo, A. (1997). Applying data mining techniques in text analysis. (Report C-1997-23). Helsinki: University of Helsinki, Dept. of Computer Science. Retrieved March 1, 2001, from the World Wide Web: http://www.cs.helsinki.fi/u/hahonen/publications.html Ahonen, H., Mannila, H., & Nikunen, E. (1994). Generating grammars for SGML tagged texts lacking DTD. In M. Murata & H. Gallaire (Eds.), Proceedings of the Workshop on Principles of Document Processing (PODP) '94. Darmstadt. Retrieved March 1, 2001, from the World Wide Web: http://www.cs.helsinki.fi/u/hahonen/ahonen_podp94.ps Ankerst, M., Ester, M., & Kriegel, H.-P. (2000). Towards an effective cooperation of the user and the computer for classification. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000 (pp. 179–188). New York: ACM Press. Arning, A. R. (1996). A linear method for deviation detection in large databases. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (pp. 164–169). Menlo Park, CA: AAAI Press. Arocena, G., Mendelzon, A., & Mihaila, G. (1997). Applications of a Web query language. In G. O. Arocena, A. O. Mendelzon, & G. A. Mihaila (Eds.), Proceedings of the 6th International WWW Conference. Retrieved March 1, 2001, from the World Wide Web: http://www.scope.gmd.de/info/www6/technical/paper267/paper267.html P. Atzeni, A. Mendelzon, & G. Mecca (Eds.). (1999). The World Wide Web and databases: EDBT Workshop, WebDB'98. New York: Springer. Baeza-Yates, R., & Ribeiro-Nero, B. (1999). Modern information retrieval. New York: ACM Press. Baralis, E., & Psaila, G. (1999). Incremental refinement of mining queries. In M. Mohania, & A. M. Tjoa (Eds.), Data warehousing and knowledge discovery (pp. 173–182). Berlin: Springer. Bayardo, R. J. (1998). Efficiently mining long patterns from databases. In L. M. Haas & A. Tiwary (Eds.), SIGMOD 1998, Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 85–93). New York: ACM Press. Beeri, C., & P. Buneman (Eds.). (1999). Database Theory—ICDT '99. ( Lecture notes in computer science 1540). Berlin: Springer. Beeri, C., Elber, G., Milo, T., Sagio, Y., Shmueli, O., Tishby, N., Kogan, Y., Konopnicki, D., Mogilevski, P., & Slonim, N. (1998). WebSite—a tool suite for harnessing Web data. In P. Atzeni, A. Mendelzon, & G. Mecca (Eds.), International Workshop on World Wide Web and Databases, WebDB (pp. 152–171). Berlin: Springer. Beeri, C., & Milo, T. (1999). Schemas for interpretation and translation of structured and semistructured data. In C. Beeri & P. Buneman (Eds.), Database Theory—ICDT'99 (pp. 296–313). Berlin: Springer. Benoǐt, G., & Andrews, J. E. (2000). Data discretization for novel resource discovery in large medical data sets. Proceedings of the AMIA Annual Symposium, (pp. 61–65). Bethesda, MD: American Medical Association. Retrieved March 1, 2001, from the World Wide Web: http://www.amia.org/pubs/symposia/D200636.pdf Berry, M. J. A. (1999a). Mining the wallet. Decision Support 2(9). Retrieved March 1, 2001, from the World Wide Web: http://www.intelligententerprise.com/ 992206/decision.shtml Berry, M. J. A. (1999b). The privacy backlash. Intelligent Enterprise, 2(15). Retrieved March 1, 2001, from the World Wide Web: http://www.intelligententerprise. com/992610/decision.shtml Berry, M. J. A., & Linoff, G. (1997). Data mining techniques for marketing, sales, and customer support. New York: Wiley. Berry, M. J. A., & Linoff, G. (2000). Mastering data mining: The art and science of customer relationship management. New York: Wiley. Berson, A., & Smith, S. J. (1997). Data warehousing, data mining, and OLAP. New York: McGraw-Hill. Berson, A., Smith, S., & Thearling, K. (2000). Building data mining applications for CRM. New York: McGraw-Hill. Bettini, C. (2000). Time granularities in databases, data mining, and temporal reasoning. Berlin: Springer. Biafore, S. (1999). Predictive solutions bring more power to decision makers. Health Management Technology, 20(10). Retrieved March 1, 2001, from the World Wide Web: http://healthmgttech.com Bigus, J. P. (1996). Data mining with neural networks: Solving businessproblems—from application development to decision support. New York: McGraw-Hill. Bigus, J. P. & Bigus, J. (1998). Constructing intelligent agents with Java: A programmer's guide to smarter applications. New York: Wiley. Bleyberg, M. Z. (1999). Preserving text categorization through translation. IEEE SMC'99 Conference Proceedings. International Conference on Systems, Man, and Cybernetics. (pp. 912–917). Piscataway, NJ: IEEE. H.-H. Bock, & E. Diday (Eds.). (2000). Analysis of symbolic data: Exploratory methods for extracting statistical information from complex data. New York: Springer. Bonchi, F., Giannoti, F., Mainetto, G., & Pedreschi, D. (1999). Using data mining techniques in fiscal fraud detection. In M. K. Mohania & A. Min Tjoa (Eds.), Data warehousing and knowledge discovery, DaWaK'99. ( Lecture notes in computer science 1676) (pp. 369–376). Berlin: Springer. Bose, R., & Sugumaran, V. (1999). Application of intelligent agent technology for managerial data analysis and mining. Data Base for Advances in Information Systems, 30(1), 77–94. Retrieved March 1, 2001, from the World Wide Web: http://www.cis.gsu.edu/˜dbase/ Bourne, P. E. (2000). Bioinformatics meets data mining: Time to dance? Trends in Biotechnology, 18, 228–230. Brachman, R., & Anand, T. (1996). The process of knowledge discovery in databases: A human-centered approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 35–57). Cambridge, MA: AAAI Press/MIT Press. Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., & Simoudis, E. (1996). Mining business databases. Communications of the ACM, 39(11), 42–48. M. A. Bramer (Ed.) (1999). Knowledge discovery and data mining. London: Institution of Electrical Engineers. Brazma, A. (1999). Mining the yeast genome expression and sequence data. Bioinformer, 4. Retrieved March 1, 2001, from the World Wide Web: http://bionformer. ebi.ac.uk/newsletter/archives/4/lead_article.html Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets: Generalizing association rules to correlations. Proceedings of the ACM-SIGMOD 1997 Conference on Management of Data, 265–276. Brown, A. D. (2000). High-bandwidth, low-latency, and scalable storage systems. Retrieved March 1, 2001, from the World Wide Web: http://www.pdl.cs.cmu.edu/NASD Brown, T. J., & Mielke, P. W. (2000). Statistical mining and data visualization in atmospheric sciences. Boston: Kluwer. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining: From concept to implementation. Upper Saddle River, NJ: Prentice-Hall. Caruana, R., & Freitag, D. (1994). Greedy attribute selection. In W. W. Cohen & H. Hirsh (Eds.), Machine Learning: Proceedings of the Eleventh International Conference (pp. 28–36). San Francisco: Morgan Kaufmann. Chattratichat, J., Darlington, J., Guo, Y., Hedvall, S., Köler, M., & Syed, J. (1999). An architecture for distributed enterprise data mining. HPCN Europe, 1999, 573–582. Chaudhuri, S. (1998). Data mining and database systems: Where is the intersection? Bulletin of the Technical Committee on Data Engineering, 21(1), 4–8. S. Chaudhuri & D. Madigan (Eds.) (1999). The 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD-99. New York: ACM Press. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., & Widom, J. (1994). The Tsimmis Project: Integration of heterogeneous information sources. Proceedings of the 100th Anniversary Meeting of the Information Processing Society of Japan. (pp. 7–18). Tokyo: Information Processing Society. Chen, L., & Rundensteiner, E. A. (1999). Aggregation path index for incremental Web view maintenance. Retrieved March 1, 2001, from the World Wide Web: http://wpi.edu/pub/techreports/9933.ps.gz Chen, M.-S., Han, J., & Yu, P. S. (1996). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8, 866–883. Retrieved March 1, 2001, from the World Wide Web: http://db.cs.sfu.ca/sections/publication/kdd/kdd.html Chiang, D.-A., Chow, L. R., & Wang, Y.-F. (2000, June). Mining time series data by a fuzzy linguistic summary system, Fuzzy Sets and Systems, 112, 419–432. Ching, J., Wong, A., & Chan, K. (1995). Class-dependent discretization for inductive learning from continuous and mixed mode data. IEEE Transactions on Knowledge and Data Engineering, 17, 641–651. Chou, D. C., & Chou, A. Y. (1999). A manager's guide to data mining. Information Systems Management, 16(14), 33–42. Church, K. W., & Rau, L. F. (1995). Commercial applications of natural language processing. Communications of the ACM, 38(11), 71–79. Cios, K., Pedrycz, W., & Swiniarski, R. (1998). Data mining methods for knowledge discovery. Boston: Kluwer. Clifton, C., & Couley, R. (2000) TopCat: Data mining for topic identification in a text corpus. In M. J. Zaki & C.-T. Ho (Eds.), Large-scale parallel data mining (pp. 174–183). Berlin: Springer. Coenen, F., Swinnen, G., Vanhoof, K., & Wets, G. (2000). The improvement of response modeling: Combining rule-induction and case-based reasoning. Expert Systems with Applications, 18, 307–313. Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the World Wide Web. Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence, ICTAI'97. Menlo Park, CA: IEEE. Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10, 37–78. Dasarathy, B. V. (1991). Nearest neighbor (NN) norms: pattern classification techniques. Los Alamitos, CA: IEEE. Dasarathy, B. V. (2000). Data mining and knowledge discovery: Theory, tools, and technology II. Bellingham, WA: SPIE (International Society for Optical Engineering). Date, C. J. (2000). An introduction to database systems. ( 7th ed.). Reading, MA: Addison-Wesley. Datta, P. (1997). Applying clustering to the classification problem. Proceedings of the 14th National Conference on Artificial Intelligence (pp. 82–87). Menlo Park, CA: AAAI Press. de Sousa, M. S. R., Mattoso, M., & Ebecken, N. F. F. (1999). Mining a large database with a parallel database server. Intelligent Data Analysis, 3, 437–451. DeCoste, D., & Wagstaff, K. (2000). Alpha seeding for support vector machines. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 345–349). New York: ACM Press. Deogun, J. S., Raghavan, V. V., Sarkar, A., & Sever, H. (1996). Data mining. Trends in research and development. In T. Y. Lin, & N. Cercone (Eds.), Rough sets and data mining: Analysis of imprecise data (pp. 9–46). Boston: Kluwer. Deogun, J. S., Raghavan, V. V., & Sever, H. (1995). Exploiting upper approximations in the rough set methodology. In U. Fayyad, & R. Uthurusamy (Eds.), First International Conference on Knowledge Discovery and Data Mining (pp. 69–74). Berlin: Springer. Devlin, B., (1996). Data warehouse, from architecture to implementation. Reading, MA: Addison-Wesley. Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 71–80). New York: ACM Press. Retrieved March 1, 2001, from the World Wide Web: http://www.kric.ac.kr:8080/pubs/contents/proceedings/ ai/347090 Dougherty, N., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Machine Learning: Proceedings of the Twelfth International Conference (pp. 194–202). San Francisco: Morgan Kaufmann. El-Khatib, H. T., Williams, M. H., MacKinnon, L. M., & Marwick, D. H. (2000). A framework and test-suite for assessing approaches to resolving heterogeneity in distributed databases. Information and Software Technology, 42, 505–515. Elder, J. F. (2000). Top 10 data mining mistakes. Retrieved March 1, 2001, from the World Wide Web: http://www.datamininglab.com Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability for clustering algorithms revisited. SIGKDD Explorations, 2(1), 51–57. Fayyad, U. (1998). Mining databases: towards algorithms for knowledge discovery. Bulletin of the Technical Committee on Data Engineering, 21(1). Retrieved March 1, 2001, from the World Wide Web: http://www.research.microsoft.com/ research/db/debull/98mar/fayyad6.ps Fayyad, U., Haussler, D., & Stolorz, P. (1996). Mining scientific data. Communications of the ACM, 39(11), 51–57. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: An overview. Advances in knowledge discovery and data mining. Menlo Park, CA: AAAI Press/MIT. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining: Toward a unifying framework. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining KDD-96 (pp. 82–88). Menlo Park, CA: AAAI Press. Fayyad, U., & Uthurusamy, R. (1999). Data mining and knowledge discovery in data bases: Introduction to the special issue. Communications of the ACM, 39(11), 24–26. Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous attributes for classification learning. In R. Bajcsy (Ed.), Proceedings of the 13th International Joint Conference on Artificial Intelligence (pp. 1022–1027). San Francisco: Morgan Kauffman. Feldman, R., Aumann, Y., Fresko, M., Liphstat, O., Rosenfeld, B., & Schler, Y. (1999). Text mining via information extraction. In M. J. Zaki & C.-T. Ho (Eds.), Large-scale parallel data mining (pp. 165–173). Berlin: Springer. Feldman, R., Dagan, I., & Hirsch, H. (1998). Mining text using keyword distributions. Journal of Intelligent Information Systems, 10, 281–300. Feldman, R., Klosgen, W., Zilberstein, A. (1997). Visualization techniques to explore data mining results for document collections. In D. Heckerman, H. Mannila, D. Pregibon, & R. Uthurusamy (Eds.), Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, KDD 97 (pp. 16–23). Menlo Park, CA: AAAI Press. Florescu, D., Levy, D., & Mendelzon, A. (1998). Database techniques for the World-Wide Web: A survey. SIGMOD Record, 27(3), 59–74. J. Fong (Ed.) (1997). Data mining, data warehousing & client/server databases: Proceedings of the 8th International Database Workshop. New York: Springer. Fountain, T., Dietterich, T., & Sudyka, B. (2000). Mining IC test data to optimize VLSI testing. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000 (pp. 18–25). New York: ACM Press. W. B. Frakes, & R. Baeza-Yates (Eds.). (1992). Information retrieval: Data structures & algorithms. Englewood Cliffs, NJ: Prentice-Hall. Franstrom, F., Lewis, J., & Elkan, C. (2000). Scalability for cluster algorithm revisited. SIGKDD Exploration, 2(1), 51–57. Frasconi, P., Gori, M., & Soda, G. (1999). Data categorization using decision trellises. IEEE Transactions on Knowledge and Data Engineering, 11, 697–712. Freitas, A. A. (1998). Mining very large databases with parallel processing. Boston: Kluwer. Freitas, A. A. (1999). On rule interestingness measures. Knowledge-Based Systems, 12, 309–315. Fu, Z. (1999). Dimensionality optimization by heuristic greedy learning vs. genetic algorithms in knowledge discovery and data mining. Intelligent Data Analysis, 3, 211–225. Fukuda, T., Morimoto, Y., Shinichi, M., & Takeshi, T. (1999). Mining optimized association rules for numeric attributes. Journal of Computer and System Sciences, 58(1), 1–12. Furtado, P., & Madeira, H. (1999). Analysis of accuracy of data reduction techniques. In M. K. Mohania & A. Min Tjoa (Eds.), Data Warehousing and Knowledge Discovery, First International Conference, DaWaK '99 (pp. 377–388). New York: Springer. Gaizauskas, R., & Wilks, Y. (1998). Information extraction: Beyond document retrieval. Computational Linguistics and Chinese Language Processing, 3(2), 17–60. Gardner, C., (1996). IBM Data Mining Technology. Retrieved March 1, 2001, from the World Wide Web: http://booksrv2.raleigh.ibm.com/cgi-bin/bookmgr/bookmgr. exe/NOFRAMES/datamine/CCONTENTS Gavrilov, M., Anguelov, D., Indyu, P., & Motwani, R. (2000). Mining the stock market: Which measure is best? Proceedings of the Sixth ACM SIG KDD International Conference on Knowledge Discovery and Data Mining, KDD 2000 (pp. 487–496). New York: ACM Press. Ge, X., & Smyth, P. (2000). Deformable Markov model templates for time-series pattern matching. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000 (pp. 81–90). Menlo Park: AAAI. Glymour, C., & Cooper, G. F. (1999). Computation, causation, and discovery. Menlo Park, CA: AAAI Press. Glymour, C., Madigan, D., Pregibon, D., & Smyth, P. (1996). Statistical inference and data mining. Communications of the ACM, 39(11), 35–41. Goldman, J. A., Chu, W. W., Parker, D. S., & Goldman, R. M. (1999). Term domain distribution analysis: A data mining tool for text databases. Methods of Information in Medicine, 38, 96–101. Goodacre, R. (2000). Kohonan artificial neural networks. Retrieved March 1, 2001, from the World Wide Web: http://gepasi.dbs.aber.ac.uk/roy/koho/kohonen.html Gray, J., Bosworth, A., Layman, A., & Pirahesh, H. (1995). Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. (Microsoft Technical Report MSR-TR-95-22). Redmond, WA: Microsoft. Greening, D. R. (2000). Data mining on the Web. Web Techniques, 5(1). Retrieved March 1, 2001, from the World Wide Web: http://www.webtechniques.com/ archives/2000/01/greening Grossman, R., Kasif, S., Moore, R., Rocke, D., & Ullman, J. (1999). Data mining research: Opportunities and challenges. A report of three NSF workshops on mining large, massive, and distributed data. Retrieved from the World Wide Web March 1, 2001: http://www.ncdm.uic.edu/M3D-final-report.htm Grossman, R. L. (1996). Data mining challenges for digital libraries. ACM Computing Surveys, 28(4es). Retrieved March 1, 2001, from the World Wide Web: http://www.acm.org/pubs/citations/journals/surveys/1996-28-4es/a108-grossman Grossman, R. L., Baily, S., Kasif, S., Mon, D., Ramu, A., & Malhi, B. (1998). The preliminary design of Papyrus: A system for high performance, distributed data mining over clusters, meta-clusters and super-clusters. In P. Chan & H. Kargupta (Eds.), Proceedings of the KDD-98 Workshop on Distributed Data Mining (pp. 37–43). Menlo Park: AAAI. Retrieved March 1, 2001, from the World Wide Web: http://www.lac.uic.edu/˜grossman/papers/kdd-98-ddm.pdf Groth, R. (1998). Data mining: A hands-on approach for business professionals. Upper Saddle River, NJ: Prentice-Hall. Groth, R. (2000). Data mining: Building competitive advantage. Upper Saddle River, NJ: Prentice-Hall. Gunopulos, D., & Rastogi, R. (2000). Workshop report: 2000 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. SIGKDD Explorations, 2(1), 83–84. Guo, Y., & Grossman, R. (1999). High performance data mining: Scaling algorithms, applications, and systems. Boston: Kluwer. Hafaz, A., Deogun, J., & Raghavan, V. V. (1999). The item-set tree: A data structure for data mining. In M. Mohania & A. M. Tjoa (Eds.), Data warehousing and knowledge discovery (pp. 183–192). Berlin: Springer. Han, J., & Kamber, M. (2000). Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann. Hearst, M. (1999). Untangling text data mining. In Proceedings of ACL'99. Retrieved March 1, 2001, from the World Wide Web: http://www.sims.berkeley. edu/˜hearst/papers/acl99/acl99-tdm.html Hemmer, M. C., & Gasteiger, J. (2000). Data mining in chemistry. Retrieved March 1, 2001, from the World Wide Web: http://www.terena.nl/tnc2000/proceedings/10B/10b5.html Hirota, K., & Pedrycz, W. (1999). Fuzzy computing for data mining. Proceedings of the IEEE, 87, 1575–1600. Ho, T. B. (2000). Introduction to knowledge discovery and data mining. Retrieved March 1, 2001, from the World Wide Web: http://203.162.7.85/unescocourse/knowledge/AllChapters.doc Holmes, J. H., Durbin, D. R., & Winston, F. K. (2000). The learning classifier system: An evolutionary computational approach to knowledge discovery in epidemiologic surveillance. Artificial Intelligence in Medicine, 19, 53–74. Holsheimer, M., Kersten, M., Mannila, H., & Toivonen, H. (1995). A perspective on databases and data mining. In First International Conference on Knowledge Discovery and Data Mining (pp. 150–155). Menlo Park, CA: AAAI Press. Holt, J. D., & Chung, S. M. (2000). Mining of association rules in text databases using inverted hashing and pruning. In Y. Kambayashi, M. Mohania, & A. M. Tjoa (Eds.), Data mining and knowledge discovery (Lecture notes in computer science 1874) (pp. 290–300). Berlin: Springer. Hong, T.-P., Kuo, C.-S., & Chi, S.-C. (1999). Mining association rules from quantitative data. Intelligent Data Analysis, 3, 363–376. Honkela, T., Kaski, S., Lagus, K., & Kohonen, T. (1996). Newsgroup exploration with WEBSOM method and browsing interface. (Technical Report A32). Helsinki: University of Technology, Laboratory of Computer and Information Science. Hsu, W., Lee, M. L., Liu, B., & Ling, T. W. (2000). Exploration mining in diabetic patients databases: Findings and conclusions. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, 430–436. Hurwitz Group. (1997). The changing role of data warehousing. ENT, 11(2). Retrieved March 1, 2001, from the World Wide Web: http://www.entmag.com/papers/hurwitz.htm Hyland, R., Clifton, C., & Holland, R. E. (1999). GeoNODE: Visualising news in geospatial contexts. Retrieved March 1, 2001, from the World Wide Web: http://www.mitre.org/resources/centers/it/g061/geonode/AFCEA_GeoNODE_ paper.html IBM (1999). Data mining: Extending the information warehouse framework. Retrieved March 1, 2001, from the World Wide Web: http://www.almaden.ibm.com/cs/quest/papers/whitepaper.html#data-mining Imasaki, K. (2000) A survey of parallel data mining. Retrieved March 1, 2001, from the World Wide Web: http://www.scs.carleton.ca/˜kimasaki/DataMining/summary.htm Imielinski, T., & Virmani, A. (1999). MSQL: A query language for database mining. Data Mining and Knowledge Discovery, 3, 373–408. Imielinski, T., Virmani, A., & Abdulghani, A. (1999). DMajor—application programming interface for database mining. Data Mining and Knowledge Discovery, 3, 347–372. Inmon, W. H. (1996). Building the data warehouse. ( 2nd ed.). New York: Wiley. Jacobs, P. S., & Rau, L. F. (1990). SCISOR: extracting information from on-line news. Communications of the ACM, 33(11), 88–97. Jagadish, H. V., Madar, J., & Ng, R. T. (1999). Semantic compression and pattern extraction with fascicles. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, & M. L. Brodie (Eds.), VLDB'99 Proceedings of the 25th International Conference on Very Large Data Bases (pp. 186–198). San Francisco: Morgan Kauffman. Jagadish, H. V., & Ng, R. T. (2000). Incompleteness in data mining. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 1–10. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. Jiang, J., Berry, M., Donato, J. M., Ostouchov, G., & Grady, N. W. (1999). Mining consumer product data via latent semantic indexing. Intelligent Data Analysis, 3, 377–398. Joshi, J. (1999). Mining server logs for user profiles. Retrieved March 1, 2001, from the World Wide Web: http://www.cs.umbc.edu/˜ajoshi/web-mine/trl.ps.gz Joshi, K. P. (2000). Analysis of data mining algorithms. Retrieved March 1, 2001, from the World Wide Web: http://userpages.umbc.edu/˜kjoshi1/data-mine/proj_rpt.htm Joshi, K. P., Joshi, A., Yesha, Y., & Krishnapuram, R. (1999). Warehousing and mining Web logs. In Proceedings of the Second International Workshop on Web Information and Data Management (pp. 63–68). Menlo Park, CA: AAAI Press. Retrieved March 1, 2001, from the World Wide Web: http://www.acm.org/pubs/citations/proceedings/cikm/319759/p63-joshi Joshi, M. V., Han, E.-H., Karypis, G., & Kumar, V. (2000). Efficient parallel algorithms for mining associations. In M. J. Zaki & C.-T. Ho (Eds.), Large-scale parallel data mining (pp. 83–126). Berlin: Springer. Ju, P. (1997). Databases on the Web: Designing and programming for network access. New York: M&T Books. Kan, M.-Y., & McKeown, K. R. (1999). Information extraction and summarization: Domain independence through focus types. Retrieved March 1, 2001, from the World Wide Web: http://www.cs.columbia.edu/˜min/papers/sds/sds.html Kargupta, H. & Chan, P. (2000). Advances in distributed and parallel knowledge discovery. Menlo Park, CA: AAAI Press. Kargupta, H., Hamzaoglu, I., & Staf" @default.
- W4211060941 created "2022-02-13" @default.
- W4211060941 creator A5045410520 @default.
- W4211060941 date "2002-01-01" @default.
- W4211060941 modified "2023-10-18" @default.
- W4211060941 title "Data mining" @default.
- W4211060941 cites W124100703 @default.
- W4211060941 cites W1486005940 @default.
- W4211060941 cites W1488066200 @default.
- W4211060941 cites W1492458224 @default.
- W4211060941 cites W1500413852 @default.
- W4211060941 cites W1515560342 @default.
- W4211060941 cites W1529982620 @default.
- W4211060941 cites W1530781866 @default.
- W4211060941 cites W1533852349 @default.
- W4211060941 cites W1535896088 @default.
- W4211060941 cites W1538901810 @default.
- W4211060941 cites W1547399366 @default.
- W4211060941 cites W1569753559 @default.
- W4211060941 cites W1570069168 @default.
- W4211060941 cites W1570713908 @default.
- W4211060941 cites W1582804745 @default.
- W4211060941 cites W1585646276 @default.
- W4211060941 cites W158759942 @default.
- W4211060941 cites W1588969459 @default.
- W4211060941 cites W1595383282 @default.
- W4211060941 cites W1597087655 @default.
- W4211060941 cites W1601142477 @default.
- W4211060941 cites W1604803281 @default.
- W4211060941 cites W1731426455 @default.
- W4211060941 cites W1756309782 @default.
- W4211060941 cites W1817966645 @default.
- W4211060941 cites W1838906542 @default.
- W4211060941 cites W1969396066 @default.
- W4211060941 cites W1969733464 @default.
- W4211060941 cites W1979458448 @default.
- W4211060941 cites W1980867893 @default.
- W4211060941 cites W1986616689 @default.
- W4211060941 cites W1992184440 @default.
- W4211060941 cites W1992419399 @default.
- W4211060941 cites W1993657037 @default.
- W4211060941 cites W1993710936 @default.
- W4211060941 cites W1994729613 @default.
- W4211060941 cites W2000488027 @default.
- W4211060941 cites W2006685053 @default.
- W4211060941 cites W2014657544 @default.
- W4211060941 cites W2015845458 @default.
- W4211060941 cites W2017234155 @default.
- W4211060941 cites W2020122307 @default.
- W4211060941 cites W2025117541 @default.
- W4211060941 cites W2030458294 @default.
- W4211060941 cites W2031324919 @default.
- W4211060941 cites W2034741255 @default.
- W4211060941 cites W2035238564 @default.
- W4211060941 cites W2035703056 @default.
- W4211060941 cites W2036959577 @default.
- W4211060941 cites W2039090491 @default.
- W4211060941 cites W2042385018 @default.
- W4211060941 cites W2052549685 @default.
- W4211060941 cites W2053022925 @default.
- W4211060941 cites W2057839967 @default.
- W4211060941 cites W2059438927 @default.
- W4211060941 cites W2059652746 @default.
- W4211060941 cites W2061527334 @default.
- W4211060941 cites W2066771339 @default.
- W4211060941 cites W2070428250 @default.
- W4211060941 cites W2072881690 @default.
- W4211060941 cites W2076213179 @default.
- W4211060941 cites W2076294329 @default.
- W4211060941 cites W2078892750 @default.
- W4211060941 cites W2079690930 @default.
- W4211060941 cites W2083322541 @default.
- W4211060941 cites W2084496385 @default.
- W4211060941 cites W2088296258 @default.
- W4211060941 cites W2093456341 @default.
- W4211060941 cites W2094196071 @default.
- W4211060941 cites W2100406636 @default.
- W4211060941 cites W2101967637 @default.
- W4211060941 cites W2109000886 @default.
- W4211060941 cites W2114386642 @default.
- W4211060941 cites W2121940249 @default.
- W4211060941 cites W2124812961 @default.
- W4211060941 cites W2128906841 @default.
- W4211060941 cites W2132148167 @default.
- W4211060941 cites W2132528435 @default.
- W4211060941 cites W2135755202 @default.
- W4211060941 cites W2140111199 @default.
- W4211060941 cites W2141115288 @default.
- W4211060941 cites W2145311040 @default.
- W4211060941 cites W2153028052 @default.
- W4211060941 cites W2162340487 @default.
- W4211060941 cites W2163952039 @default.
- W4211060941 cites W2464995394 @default.
- W4211060941 cites W2476050747 @default.
- W4211060941 cites W2476805966 @default.
- W4211060941 cites W2477097424 @default.
- W4211060941 cites W2485462264 @default.
- W4211060941 cites W2493185506 @default.