Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211066400> ?p ?o ?g. }
- W4211066400 endingPage "7" @default.
- W4211066400 startingPage "1" @default.
- W4211066400 abstract "Remote health monitoring can help prevent disease at the earlier stages. The Internet of Things (IoT) concepts have recently advanced, enabling omnipresent monitoring. Easily accessible biomarkers for neurodegenerative disorders, namely, Alzheimer’s disease (AD) are needed urgently to assist the diagnoses at its early stages. Due to the severe situations, these systems demand high-quality qualities including availability and accuracy. Deep learning algorithms are promising in such health applications when a large amount of data is available. These solutions are ideal for a distributed blockchain-based IoT system. A good Internet connection is critical to the speed of these system responses. Due to their limited processing capabilities, smart gateway devices cannot implement deep learning algorithms. In this paper, we investigate the use of blockchain-based deep neural networks for higher speed and delivery of healthcare data in a healthcare management system. The study exhibits a real-time health monitoring for classification and assesses the response time and accuracy. The deep learning model classifies the brain diseases as benign or malignant. The study takes into account three different classes to predict the brain disease as benign or malignant that includes AD, mild cognitive impairment, and normal cognitive level. The study involves a series of processing where most of the data are utilized for training these classifiers and ensemble model with a metaclassifier classifying the resultant class. The simulation is conducted to test the efficacy of the model over that of the OASIS-3 dataset, which is a longitudinal neuroimaging, cognitive, clinical, and biomarker dataset for normal aging and AD, and it is further trained and tested on the UDS dataset from ADNI. The results show that the proposed method accurately (98%) responds to the query with high speed retrieval of classified results with an increased training accuracy of 0.539 and testing accuracy of 0.559." @default.
- W4211066400 created "2022-02-13" @default.
- W4211066400 creator A5007718416 @default.
- W4211066400 creator A5016830690 @default.
- W4211066400 creator A5030530170 @default.
- W4211066400 creator A5031509627 @default.
- W4211066400 creator A5033146853 @default.
- W4211066400 creator A5033559147 @default.
- W4211066400 creator A5044607761 @default.
- W4211066400 creator A5051146250 @default.
- W4211066400 creator A5080128628 @default.
- W4211066400 creator A5086549914 @default.
- W4211066400 creator A5090428513 @default.
- W4211066400 date "2022-02-11" @default.
- W4211066400 modified "2023-10-06" @default.
- W4211066400 title "Blockchain-Based Deep Learning to Process IoT Data Acquisition in Cognitive Data" @default.
- W4211066400 cites W2149614095 @default.
- W4211066400 cites W2161336914 @default.
- W4211066400 cites W2733306512 @default.
- W4211066400 cites W2795085730 @default.
- W4211066400 cites W2883781843 @default.
- W4211066400 cites W2886951144 @default.
- W4211066400 cites W2907683311 @default.
- W4211066400 cites W2910369831 @default.
- W4211066400 cites W2963993810 @default.
- W4211066400 cites W2997569720 @default.
- W4211066400 cites W3016087461 @default.
- W4211066400 cites W3026353565 @default.
- W4211066400 cites W3041006163 @default.
- W4211066400 cites W3044430020 @default.
- W4211066400 cites W3049070089 @default.
- W4211066400 cites W3080740574 @default.
- W4211066400 cites W3081126843 @default.
- W4211066400 cites W3109650690 @default.
- W4211066400 cites W3184842396 @default.
- W4211066400 doi "https://doi.org/10.1155/2022/5038851" @default.
- W4211066400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35187166" @default.
- W4211066400 hasPublicationYear "2022" @default.
- W4211066400 type Work @default.
- W4211066400 citedByCount "24" @default.
- W4211066400 countsByYear W42110664002022 @default.
- W4211066400 countsByYear W42110664002023 @default.
- W4211066400 crossrefType "journal-article" @default.
- W4211066400 hasAuthorship W4211066400A5007718416 @default.
- W4211066400 hasAuthorship W4211066400A5016830690 @default.
- W4211066400 hasAuthorship W4211066400A5030530170 @default.
- W4211066400 hasAuthorship W4211066400A5031509627 @default.
- W4211066400 hasAuthorship W4211066400A5033146853 @default.
- W4211066400 hasAuthorship W4211066400A5033559147 @default.
- W4211066400 hasAuthorship W4211066400A5044607761 @default.
- W4211066400 hasAuthorship W4211066400A5051146250 @default.
- W4211066400 hasAuthorship W4211066400A5080128628 @default.
- W4211066400 hasAuthorship W4211066400A5086549914 @default.
- W4211066400 hasAuthorship W4211066400A5090428513 @default.
- W4211066400 hasBestOaLocation W42110664001 @default.
- W4211066400 hasConcept C108583219 @default.
- W4211066400 hasConcept C111919701 @default.
- W4211066400 hasConcept C118552586 @default.
- W4211066400 hasConcept C119857082 @default.
- W4211066400 hasConcept C136764020 @default.
- W4211066400 hasConcept C154945302 @default.
- W4211066400 hasConcept C169900460 @default.
- W4211066400 hasConcept C2777710495 @default.
- W4211066400 hasConcept C41008148 @default.
- W4211066400 hasConcept C71924100 @default.
- W4211066400 hasConcept C92298750 @default.
- W4211066400 hasConcept C98045186 @default.
- W4211066400 hasConceptScore W4211066400C108583219 @default.
- W4211066400 hasConceptScore W4211066400C111919701 @default.
- W4211066400 hasConceptScore W4211066400C118552586 @default.
- W4211066400 hasConceptScore W4211066400C119857082 @default.
- W4211066400 hasConceptScore W4211066400C136764020 @default.
- W4211066400 hasConceptScore W4211066400C154945302 @default.
- W4211066400 hasConceptScore W4211066400C169900460 @default.
- W4211066400 hasConceptScore W4211066400C2777710495 @default.
- W4211066400 hasConceptScore W4211066400C41008148 @default.
- W4211066400 hasConceptScore W4211066400C71924100 @default.
- W4211066400 hasConceptScore W4211066400C92298750 @default.
- W4211066400 hasConceptScore W4211066400C98045186 @default.
- W4211066400 hasLocation W42110664001 @default.
- W4211066400 hasLocation W42110664002 @default.
- W4211066400 hasLocation W42110664003 @default.
- W4211066400 hasLocation W42110664004 @default.
- W4211066400 hasOpenAccess W4211066400 @default.
- W4211066400 hasPrimaryLocation W42110664001 @default.
- W4211066400 hasRelatedWork W2795261237 @default.
- W4211066400 hasRelatedWork W3014300295 @default.
- W4211066400 hasRelatedWork W3164822677 @default.
- W4211066400 hasRelatedWork W4223943233 @default.
- W4211066400 hasRelatedWork W4225161397 @default.
- W4211066400 hasRelatedWork W4312200629 @default.
- W4211066400 hasRelatedWork W4360585206 @default.
- W4211066400 hasRelatedWork W4364306694 @default.
- W4211066400 hasRelatedWork W4380075502 @default.
- W4211066400 hasRelatedWork W4380086463 @default.
- W4211066400 hasVolume "2022" @default.
- W4211066400 isParatext "false" @default.
- W4211066400 isRetracted "false" @default.