Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211077868> ?p ?o ?g. }
- W4211077868 endingPage "259" @default.
- W4211077868 startingPage "259" @default.
- W4211077868 abstract "An important aspect of using entropy-based models and proposed “synthetic languages”, is the seemingly simple task of knowing how to identify the probabilistic symbols. If the system has discrete features, then this task may be trivial; however, for observed analog behaviors described by continuous values, this raises the question of how we should determine such symbols. This task of symbolization extends the concept of scalar and vector quantization to consider explicit linguistic properties. Unlike previous quantization algorithms where the aim is primarily data compression and fidelity, the goal in this case is to produce a symbolic output sequence which incorporates some linguistic properties and hence is useful in forming language-based models. Hence, in this paper, we present methods for symbolization which take into account such properties in the form of probabilistic constraints. In particular, we propose new symbolization algorithms which constrain the symbols to have a Zipf–Mandelbrot–Li distribution which approximates the behavior of language elements. We introduce a novel constrained EM algorithm which is shown to effectively learn to produce symbols which approximate a Zipfian distribution. We demonstrate the efficacy of the proposed approaches on some examples using real world data in different tasks, including the translation of animal behavior into a possible human language understandable equivalent." @default.
- W4211077868 created "2022-02-13" @default.
- W4211077868 creator A5013458161 @default.
- W4211077868 creator A5086895345 @default.
- W4211077868 date "2022-02-10" @default.
- W4211077868 modified "2023-09-25" @default.
- W4211077868 title "An Information Theoretic Approach to Symbolic Learning in Synthetic Languages" @default.
- W4211077868 cites W1507719567 @default.
- W4211077868 cites W1963937384 @default.
- W4211077868 cites W1967504864 @default.
- W4211077868 cites W1967712865 @default.
- W4211077868 cites W1969682141 @default.
- W4211077868 cites W1975971707 @default.
- W4211077868 cites W1980499355 @default.
- W4211077868 cites W1984875980 @default.
- W4211077868 cites W1986908574 @default.
- W4211077868 cites W1991304997 @default.
- W4211077868 cites W1992427426 @default.
- W4211077868 cites W1995806138 @default.
- W4211077868 cites W1995875735 @default.
- W4211077868 cites W2008756354 @default.
- W4211077868 cites W2009507059 @default.
- W4211077868 cites W2011521683 @default.
- W4211077868 cites W2024470753 @default.
- W4211077868 cites W2042475793 @default.
- W4211077868 cites W2048176942 @default.
- W4211077868 cites W2050715692 @default.
- W4211077868 cites W2063475095 @default.
- W4211077868 cites W2065399579 @default.
- W4211077868 cites W2068506707 @default.
- W4211077868 cites W2069162998 @default.
- W4211077868 cites W2071818961 @default.
- W4211077868 cites W2079145130 @default.
- W4211077868 cites W2092684779 @default.
- W4211077868 cites W2109808436 @default.
- W4211077868 cites W2119731134 @default.
- W4211077868 cites W2120605154 @default.
- W4211077868 cites W2120701504 @default.
- W4211077868 cites W2126635158 @default.
- W4211077868 cites W2129802470 @default.
- W4211077868 cites W2131134557 @default.
- W4211077868 cites W2150593711 @default.
- W4211077868 cites W2160013257 @default.
- W4211077868 cites W2160943512 @default.
- W4211077868 cites W2164368909 @default.
- W4211077868 cites W2170521549 @default.
- W4211077868 cites W2170587460 @default.
- W4211077868 cites W2318794083 @default.
- W4211077868 cites W2336843937 @default.
- W4211077868 cites W2530500720 @default.
- W4211077868 cites W2604683892 @default.
- W4211077868 cites W2744046280 @default.
- W4211077868 cites W2767919978 @default.
- W4211077868 cites W2790187035 @default.
- W4211077868 cites W2791583388 @default.
- W4211077868 cites W2893274149 @default.
- W4211077868 cites W2935643394 @default.
- W4211077868 cites W2963068615 @default.
- W4211077868 cites W2971441272 @default.
- W4211077868 cites W2971775690 @default.
- W4211077868 cites W2993383518 @default.
- W4211077868 cites W2997805114 @default.
- W4211077868 cites W3033664100 @default.
- W4211077868 cites W3130858274 @default.
- W4211077868 cites W3156879138 @default.
- W4211077868 cites W3188051575 @default.
- W4211077868 cites W3195711001 @default.
- W4211077868 cites W3213352182 @default.
- W4211077868 cites W4212807394 @default.
- W4211077868 cites W4232082542 @default.
- W4211077868 cites W4244017338 @default.
- W4211077868 cites W96090752 @default.
- W4211077868 doi "https://doi.org/10.3390/e24020259" @default.
- W4211077868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35205553" @default.
- W4211077868 hasPublicationYear "2022" @default.
- W4211077868 type Work @default.
- W4211077868 citedByCount "2" @default.
- W4211077868 countsByYear W42110778682022 @default.
- W4211077868 countsByYear W42110778682023 @default.
- W4211077868 crossrefType "journal-article" @default.
- W4211077868 hasAuthorship W4211077868A5013458161 @default.
- W4211077868 hasAuthorship W4211077868A5086895345 @default.
- W4211077868 hasBestOaLocation W42110778681 @default.
- W4211077868 hasConcept C105795698 @default.
- W4211077868 hasConcept C106301342 @default.
- W4211077868 hasConcept C11413529 @default.
- W4211077868 hasConcept C121332964 @default.
- W4211077868 hasConcept C125932096 @default.
- W4211077868 hasConcept C137293760 @default.
- W4211077868 hasConcept C154945302 @default.
- W4211077868 hasConcept C2776459999 @default.
- W4211077868 hasConcept C33923547 @default.
- W4211077868 hasConcept C41008148 @default.
- W4211077868 hasConcept C49937458 @default.
- W4211077868 hasConcept C62520636 @default.
- W4211077868 hasConcept C76155785 @default.
- W4211077868 hasConcept C80444323 @default.
- W4211077868 hasConceptScore W4211077868C105795698 @default.