Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211083365> ?p ?o ?g. }
- W4211083365 endingPage "13" @default.
- W4211083365 startingPage "1" @default.
- W4211083365 abstract "This article proposes a new traffic signal control algorithm to deal with unknown-traffic-system uncertainties and reduce delays in vehicle travel time. Unknown-traffic-system dynamics are approximated using a recurrent neural network (NN). To accurately identify the traffic system model, an online-learning scheme is developed to switch among a set of candidate NNs (i.e., multiple-model NNs) based on their estimation errors. Then, a bank of optimal signal-timing controllers is designed based on the online identification of the traffic system. Simulation studies have been carried out for the obtained control strategies using multiple-model NNs, and the desired results have been obtained. Moreover, compared with the widely used actuated traffic signal control schemes, it is shown that the proposed method can reduce vehicle travel delays and improve traffic system robustness." @default.
- W4211083365 created "2022-02-13" @default.
- W4211083365 creator A5017310303 @default.
- W4211083365 creator A5032245741 @default.
- W4211083365 creator A5044790227 @default.
- W4211083365 creator A5080664862 @default.
- W4211083365 date "2022-01-01" @default.
- W4211083365 modified "2023-10-16" @default.
- W4211083365 title "Traffic Signal Control With Adaptive Online-Learning Scheme Using Multiple-Model Neural Networks" @default.
- W4211083365 cites W1162378864 @default.
- W4211083365 cites W1516835682 @default.
- W4211083365 cites W1594414662 @default.
- W4211083365 cites W1639167632 @default.
- W4211083365 cites W1996872168 @default.
- W4211083365 cites W2007894170 @default.
- W4211083365 cites W2010152647 @default.
- W4211083365 cites W2039617089 @default.
- W4211083365 cites W2048687352 @default.
- W4211083365 cites W2060605484 @default.
- W4211083365 cites W2069913713 @default.
- W4211083365 cites W2082371193 @default.
- W4211083365 cites W2088595989 @default.
- W4211083365 cites W2097533491 @default.
- W4211083365 cites W2107335022 @default.
- W4211083365 cites W2146014298 @default.
- W4211083365 cites W2151858664 @default.
- W4211083365 cites W2153002112 @default.
- W4211083365 cites W2157077261 @default.
- W4211083365 cites W2217811227 @default.
- W4211083365 cites W2302353080 @default.
- W4211083365 cites W2480177474 @default.
- W4211083365 cites W2725582697 @default.
- W4211083365 cites W2742666445 @default.
- W4211083365 cites W2789796987 @default.
- W4211083365 cites W2906809365 @default.
- W4211083365 cites W2907842668 @default.
- W4211083365 cites W2946768707 @default.
- W4211083365 cites W2960280836 @default.
- W4211083365 cites W2965509979 @default.
- W4211083365 cites W2980463192 @default.
- W4211083365 cites W3046760967 @default.
- W4211083365 cites W3047495191 @default.
- W4211083365 cites W4238995758 @default.
- W4211083365 cites W648594167 @default.
- W4211083365 doi "https://doi.org/10.1109/tnnls.2022.3146811" @default.
- W4211083365 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35139028" @default.
- W4211083365 hasPublicationYear "2022" @default.
- W4211083365 type Work @default.
- W4211083365 citedByCount "3" @default.
- W4211083365 countsByYear W42110833652023 @default.
- W4211083365 crossrefType "journal-article" @default.
- W4211083365 hasAuthorship W4211083365A5017310303 @default.
- W4211083365 hasAuthorship W4211083365A5032245741 @default.
- W4211083365 hasAuthorship W4211083365A5044790227 @default.
- W4211083365 hasAuthorship W4211083365A5080664862 @default.
- W4211083365 hasBestOaLocation W42110833653 @default.
- W4211083365 hasConcept C104317684 @default.
- W4211083365 hasConcept C107464732 @default.
- W4211083365 hasConcept C127413603 @default.
- W4211083365 hasConcept C134306372 @default.
- W4211083365 hasConcept C147176958 @default.
- W4211083365 hasConcept C154945302 @default.
- W4211083365 hasConcept C176715033 @default.
- W4211083365 hasConcept C185592680 @default.
- W4211083365 hasConcept C199360897 @default.
- W4211083365 hasConcept C2775924081 @default.
- W4211083365 hasConcept C2776006172 @default.
- W4211083365 hasConcept C2779843651 @default.
- W4211083365 hasConcept C33923547 @default.
- W4211083365 hasConcept C41008148 @default.
- W4211083365 hasConcept C47446073 @default.
- W4211083365 hasConcept C47796450 @default.
- W4211083365 hasConcept C50644808 @default.
- W4211083365 hasConcept C55493867 @default.
- W4211083365 hasConcept C63479239 @default.
- W4211083365 hasConcept C77618280 @default.
- W4211083365 hasConcept C79403827 @default.
- W4211083365 hasConceptScore W4211083365C104317684 @default.
- W4211083365 hasConceptScore W4211083365C107464732 @default.
- W4211083365 hasConceptScore W4211083365C127413603 @default.
- W4211083365 hasConceptScore W4211083365C134306372 @default.
- W4211083365 hasConceptScore W4211083365C147176958 @default.
- W4211083365 hasConceptScore W4211083365C154945302 @default.
- W4211083365 hasConceptScore W4211083365C176715033 @default.
- W4211083365 hasConceptScore W4211083365C185592680 @default.
- W4211083365 hasConceptScore W4211083365C199360897 @default.
- W4211083365 hasConceptScore W4211083365C2775924081 @default.
- W4211083365 hasConceptScore W4211083365C2776006172 @default.
- W4211083365 hasConceptScore W4211083365C2779843651 @default.
- W4211083365 hasConceptScore W4211083365C33923547 @default.
- W4211083365 hasConceptScore W4211083365C41008148 @default.
- W4211083365 hasConceptScore W4211083365C47446073 @default.
- W4211083365 hasConceptScore W4211083365C47796450 @default.
- W4211083365 hasConceptScore W4211083365C50644808 @default.
- W4211083365 hasConceptScore W4211083365C55493867 @default.
- W4211083365 hasConceptScore W4211083365C63479239 @default.
- W4211083365 hasConceptScore W4211083365C77618280 @default.
- W4211083365 hasConceptScore W4211083365C79403827 @default.