Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211087729> ?p ?o ?g. }
- W4211087729 endingPage "101717" @default.
- W4211087729 startingPage "101717" @default.
- W4211087729 abstract "Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC. Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal tumors in the world. It is characterized by a poor prognosis and a failure to respond to therapy (1Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019.CA Cancer J. Clin. 2019; 69: 7-34Google Scholar). Genomic analysis of PDAC revealed that the most frequent genetic alterations include the activation of oncogene KRAS and inactivation of the tumor suppressors tumor protein p53 (TP53), SMA-related and MAD-related protein 4 (SMAD4), and cyclin-dependent kinase inhibitor 2A (CDKN2A) (2Vincent A. Herman J. Schulick R. Hruban R.H. Goggins M. Pancreatic cancer.Lancet. 2011; 378: 607-620Google Scholar, 3Jones S. Zhang X. Parsons D.W. Lin J.C. Leary R.J. Angenendt P. Mankoo P. Carter H. Kamiyama H. Jimeno A. Hong S.M. Fu B. Lin M.T. Calhoun E.S. Kamiyama M. et al.Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.Science. 2008; 321: 1801-1806Google Scholar, 4Pan S. Brentnall T.A. Chen R. Proteome alterations in pancreatic ductal adenocarcinoma.Cancer Lett. 2020; 469: 429-436Google Scholar). The accumulation of these genetic mutations contributes to the stepwise progression of PDAC. KRAS mutations occur in the early stage of PDAC (5Fischer C.G. Wood L.D. From somatic mutation to early detection: Insights from molecular characterization of pancreatic cancer precursor lesions.J. Pathol. 2018; 246: 395-404Google Scholar), whereas mutations of TP53, SMAD4, and CDKN2A arise in advanced pancreatic intraepithelial neoplasias and invasive pancreatic adenocarcinomas (6Distler M. Aust D. Weitz J. Pilarsky C. Grutzmann R. Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN.Biomed. Res. Int. 2014; 2014: 474905Google Scholar, 7Hruban R.H. Maitra A. Goggins M. Update on pancreatic intraepithelial neoplasia.Int. J. Clin. Exp. Pathol. 2008; 1: 306-316Google Scholar, 8Murphy S.J. Hart S.N. Lima J.F. Kipp B.R. Klebig M. Winters J.L. Szabo C. Zhang L. Eckloff B.W. Petersen G.M. Scherer S.E. Gibbs R.A. McWilliams R.R. Vasmatzis G. Couch F.J. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor.Gastroenterology. 2013; 145: 1098-1109.e1Google Scholar). These common genetic abnormalities can profoundly perturb protein interactions and specific signaling pathways related to cell survival (9Eser S. Reiff N. Messer M. Seidler B. Gottschalk K. Dobler M. Hieber M. Arbeiter A. Klein S. Kong B. Michalski C.W. Schlitter A.M. Esposito I. Kind A.J. Rad L. et al.Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer.Cancer Cell. 2013; 23: 406-420Google Scholar, 10Ardito C.M. Gruner B.M. Takeuchi K.K. Lubeseder-Martellato C. Teichmann N. Mazur P.K. Delgiorno K.E. Carpenter E.S. Halbrook C.J. Hall J.C. Pal D. Briel T. Herner A. Trajkovic-Arsic M. Sipos B. et al.EGF receptor is required for KRAS-induced pancreatic tumorigenesis.Cancer Cell. 2012; 22: 304-317Google Scholar), DNA damage repair (11Perkhofer L. Gout J. Roger E. Kude de Almeida F. Baptista Simoes C. Wiesmuller L. Seufferlein T. Kleger A. DNA damage repair as a target in pancreatic cancer: State-of-the-art and future perspectives.Gut. 2020; 70: 606-617Google Scholar), angiogenesis (12Itakura J. Ishiwata T. Friess H. Fujii H. Matsumoto Y. Buchler M.W. Korc M. Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression.Clin. Cancer Res. 1997; 3: 1309-1316Google Scholar, 13Niedergethmann M. Hildenbrand R. Wostbrock B. Hartel M. Sturm J.W. Richter A. Post S. High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas.Pancreas. 2002; 25: 122-129Google Scholar), invasion (14Chen R. Yi E.C. Donohoe S. Pan S. Eng J. Cooke K. Crispin D.A. Lane Z. Goodlett D.R. Bronner M.P. Aebersold R. Brentnall T.A. Pancreatic cancer proteome: The proteins that underlie invasion, metastasis, and immunologic escape.Gastroenterology. 2005; 129: 1187-1197Google Scholar), metastasis (15Yachida S. Jones S. Bozic I. Antal T. Leary R. Fu B. Kamiyama M. Hruban R.H. Eshleman J.R. Nowak M.A. Velculescu V.E. Kinzler K.W. Vogelstein B. Iacobuzio-Donahue C.A. Distant metastasis occurs late during the genetic evolution of pancreatic cancer.Nature. 2010; 467: 1114-1117Google Scholar), and immune responses (16Qian Y. Gong Y. Fan Z. Luo G. Huang Q. Deng S. Cheng H. Jin K. Ni Q. Yu X. Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma.J. Hematol. Oncol. 2020; 13: 130Google Scholar, 17Kabacaoglu D. Ciecielski K.J. Ruess D.A. Algul H. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: Current limitations and future options.Front. Immunol. 2018; 9: 1878Google Scholar). The transforming growth factor-β (TGF-β) signaling pathway is involved in many cellular processes, such as cell proliferation, apoptosis, migration, invasion, and immune evasion, contributing to various diseases, including cancer (18Colak S. Ten Dijke P. Targeting TGF-β signaling in cancer.Trends Cancer. 2017; 3: 56-71Google Scholar, 19Batlle E. Massague J. Transforming growth factor-β signaling in immunity and cancer.Immunity. 2019; 50: 924-940Google Scholar). TGF-β is a secreted cytokine for which cellular responses are initiated by binding to specific cell surface TGF-β type I and type II receptors, that is, TβRI and TβRII. Upon TGF-β interaction with TβRII, TβRI is recruited, and a heteromeric complex is formed (20Massague J. How cells read TGF-β signals.Nat. Rev. Mol. Cell Biol. 2000; 1: 169-178Google Scholar, 21Massague J. TGFβ signalling in context.Nat. Rev. Mol. Cell Biol. 2012; 13: 616-630Google Scholar). Thereafter, the TβRII kinase phosphorylates the serine and threonine residues of TβRI, and thereby the extracellular signal is transduced across the plasma membrane (22Heldin C.H. Miyazono K. ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins.Nature. 1997; 390: 465-471Google Scholar). Subsequently, intracellular signaling by TβRI proceeds via the phosphorylation of SMAD proteins, that is, SMAD2 and SMAD3. Then, phosphorylated SMAD2/3 can form heteromeric complexes with the common SMAD mediator, that is, SMAD4, which translocates into the nucleus to regulate the transcription of target genes (23Budi E.H. Duan D. Derynck R. Transforming growth factor-β receptors and smads: Regulatory complexity and functional versatility.Trends Cell Biol. 2017; 27: 658-672Google Scholar). SMAD4 is a critical mediator of TGF-β-induced growth arrest (24Lagna G. Hata A. Hemmati-Brivanlou A. Massague J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways.Nature. 1996; 383: 832-836Google Scholar, 25Zhang Y. Feng X. We R. Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response.Nature. 1996; 383: 168-172Google Scholar) and apoptosis (26Schuster N. Krieglstein K. Mechanisms of TGF-β-mediated apoptosis.Cell Tissue Res. 2002; 307: 1-14Google Scholar), which results in its role as a tumor suppressor at the early stages of cancer progression. However, the tumor-suppressive action of TGF-β–SMAD4 signaling is lost in nearly half of PDACs because of the inactivation of SMAD4 (27Dardare J. Witz A. Merlin J.L. Gilson P. Harle A. SMAD4 and the TGFβ pathway in patients with pancreatic ductal adenocarcinoma.Int. J. Mol. Sci. 2020; 21: 3534Google Scholar). The SMAD4 gene deletion, frameshift mutation, or single point mutation can lead to the deficiency of functional SMAD4 protein, which further prevents or disrupts transduction of the canonical TGF-β–SMAD4 signaling pathway. Phosphorylated TGF-β receptors can activate SMAD2/3-dependent and SMAD4-independent pathways; in that case, receptor-regulated SMADs can make complexes with sex-determining region Y-related high-mobility group box 4 (SOX4) or thyroid transcription factor-1 (also known as NKX2-1), which compete with SMAD4 for interaction with SMAD3 (28Vervoort S.J. Lourenco A.R. Tufegdzic Vidakovic A. Mocholi E. Sandoval J.L. Rueda O.M. Frederiks C. Pals C. Peeters J.G.C. Caldas C. Bruna A. Coffer P.J. SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis.Nucleic Acids Res. 2018; 46: 9578-9590Google Scholar, 29Isogaya K. Koinuma D. Tsutsumi S. Saito R.A. Miyazawa K. Aburatani H. Miyazono K. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.Cell Res. 2014; 24: 994-1008Google Scholar). The SMAD3–thyroid transcription factor-1 and SMAD3–SOX4 complexes accumulate in the nucleus, regulate the expression of pro-oncogenic TGF-β target genes, and induce tumorigenesis (28Vervoort S.J. Lourenco A.R. Tufegdzic Vidakovic A. Mocholi E. Sandoval J.L. Rueda O.M. Frederiks C. Pals C. Peeters J.G.C. Caldas C. Bruna A. Coffer P.J. SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis.Nucleic Acids Res. 2018; 46: 9578-9590Google Scholar, 29Isogaya K. Koinuma D. Tsutsumi S. Saito R.A. Miyazawa K. Aburatani H. Miyazono K. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.Cell Res. 2014; 24: 994-1008Google Scholar, 30David C.J. Huang Y.H. Chen M. Su J. Zou Y. Bardeesy N. Iacobuzio-Donahue C.A. Massague J. TGF-β tumor suppression through a lethal EMT.Cell. 2016; 164: 1015-1030Google Scholar, 31Zhang J. Liang Q. Lei Y. Yao M. Li L. Gao X. Feng J. Zhang Y. Gao H. Liu D.X. Lu J. Huang B. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression.Cancer Res. 2012; 72: 4597-4608Google Scholar). In addition, activated TβRI can signal via non-SMAD signaling pathways, such as the mitogen-activated protein kinase signaling cascade, including the extracellular signal–regulated kinase 1/2, c-Jun amino terminal kinase, p38, and other pathways like IκB kinase, PI3K–AKT signaling, as well as the Rho-like GTPase activity (32Zhang Y.E. Non-smad signaling pathways of the TGF-β family.Cold Spring Harb. Perspect. Biol. 2017; 9a022129Google Scholar, 33Lee M.K. Pardoux C. Hall M.C. Lee P.S. Warburton D. Qing J. Smith S.M. Derynck R. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA.EMBO J. 2007; 26: 3957-3967Google Scholar, 34Arsura M. Panta G.R. Bilyeu J.D. Cavin L.G. Sovak M.A. Oliver A.A. Factor V. Heuchel R. Mercurio F. Thorgeirsson S.S. Sonenshein G.E. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: Implications in liver tumor formation.Oncogene. 2003; 22: 412-425Google Scholar, 35Descargues P. Sil A.K. Sano Y. Korchynskyi O. Han G. Owens P. Wang X.J. Karin M. IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation.Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 2487-2492Google Scholar, 36Moustakas A. Heldin C.H. Non-Smad TGF-β signals.J. Cell Sci. 2005; 118: 3573-3584Google Scholar). The SMAD-dependent and non-SMAD signaling pathways are involved in multiple cellular processes, including TGF-β-induced epithelial-to-mesenchymal transition (EMT) (37Yamashita M. Fatyol K. Jin C. Wang X. Liu Z. Zhang Y.E. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β.Mol. Cell. 2008; 31: 918-924Google Scholar, 38Zhang L. Zhou F. Garcia de Vinuesa A. de Kruijf E.M. Mesker W.E. Hui L. Drabsch Y. Li Y. Bauer A. Rousseau A. Sheppard K.A. Mickanin C. Kuppen P.J. Lu C.X. Ten Dijke P. TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis.Mol. Cell. 2013; 51: 559-572Google Scholar). EMT is a crucial step toward cell metastasis, during which the epithelial cells lose their polarity and cell–cell contacts and gain mesenchymal abilities such as enhanced migratory and invasive abilities (39Derynck R. Weinberg R.A. EMT and cancer: More than meets the eye.Dev. Cell. 2019; 49: 313-316Google Scholar). EMT can be associated with morphological or phenotypic changes accompanied by a switch in the expression of EMT marker proteins, a loss of epithelial markers, such as E-cadherin, claudin, and an increase of mesenchymal markers, including N-cadherin, vimentin (VIM), SNAIL, and SLUG (40Moustakas A. Heldin C.H. Mechanisms of TGFβ-induced epithelial-mesenchymal transition.J. Clin. Med. 2016; 5: 63Google Scholar, 41Katsuno Y. Lamouille S. Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression.Curr. Opin. Oncol. 2013; 25: 76-84Google Scholar). EMT is a dynamic and reversible process, and cells can undergo a complete EMT or, more commonly, take on a hybrid E/M status named “partial EMT”. The new term epithelial–mesenchymal plasticity is used to describe the cells undergoing intermediate E/M phenotypic states (42Yang J. Antin P. Berx G. Blanpain C. Brabletz T. Bronner M. Campbell K. Cano A. Casanova J. Christofori G. Dedhar S. Derynck R. Ford H.L. Fuxe J. Garcia de Herreros A. et al.Guidelines and definitions for research on epithelial-mesenchymal transition.Nat. Rev. Mol. Cell Biol. 2020; 21: 341-352Google Scholar). Both complete EMT and partial EMT exist in PDACs, and the latter is speculated to be involved in collective cell migration and result in an enhanced metastasis rate through the formation of clusters of circulating tumor cells (43Saxena K. Jolly M.K. Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis.Transl. Oncol. 2020; 13: 100845Google Scholar). Recent studies have provided several mechanistic explanations for the TGF-β signaling in PDACs; for example, the restoration of SMAD4 in PDAC cells leads to a TGF-β-induced lethal EMT by triggering cell apoptosis via SOX4, indicating that EMT switches SOX4 function from protumorigenic to proapoptotic (30David C.J. Huang Y.H. Chen M. Su J. Zou Y. Bardeesy N. Iacobuzio-Donahue C.A. Massague J. TGF-β tumor suppression through a lethal EMT.Cell. 2016; 164: 1015-1030Google Scholar). Glycosylation of cellular proteins and lipids is a common post-translational modification in cells, which affects many cellular processes, such as cell adhesion, proliferation, angiogenesis, migration, and invasion (44Pinho S.S. Reis C.A. Glycosylation in cancer: Mechanisms and clinical implications.Nat. Rev. Cancer. 2015; 15: 540-555Google Scholar, 45Munkley J. The glycosylation landscape of pancreatic cancer.Oncol. Lett. 2019; 17: 2569-2575Google Scholar). Dysregulated glycosylation is associated with TGF-β signaling and TGF-β-induced EMT in various cancers (46Zhang J. Ten Dijke P. Wuhrer M. Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer.Protein Cell. 2021; 12: 89-106Google Scholar) by affecting the secretion, bioavailability of TGF-β (47Yang Y. Dignam J.D. Gentry L.E. Role of carbohydrate structures in the binding of β1-latency-associated peptide to ligands.Biochemistry. 1997; 36: 11923-11932Google Scholar), TβRII localization in cells, and interaction with TGF-β (48Kim Y.W. Park J. Lee H.J. Lee S.Y. Kim S.J. TGF-β sensitivity is determined by N-linked glycosylation of the type II TGF-β receptor.Biochem. J. 2012; 445: 403-411Google Scholar). Moreover, specific glycan structures and glycogenes involved in the biosynthesis of N-glycans, O-glycans, and glycosphingolipid (GSL)-linked glycans always increase or decrease during TGF-β-induced EMT in various cancers (49Li X. Wang X. Tan Z. Chen S. Guan F. Role of glycans in cancer cells undergoing epithelial-mesenchymal transition.Front. Oncol. 2016; 6: 33Google Scholar), such as lung cancer (50Huang C. Huang M. Chen W. Zhu W. Meng H. Guo L. Wei T. Zhang J. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition.FEBS J. 2015; 282: 4295-4306Google Scholar) and breast cancer (49Li X. Wang X. Tan Z. Chen S. Guan F. Role of glycans in cancer cells undergoing epithelial-mesenchymal transition.Front. Oncol. 2016; 6: 33Google Scholar, 51Xu Q. Isaji T. Lu Y. Gu W. Kondo M. Fukuda T. Du Y. Gu J. Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines.J. Biol. Chem. 2012; 287: 16563-16574Google Scholar). During PDAC progression, aberrant glycosylation is highly correlated with several pathological processes (4Pan S. Brentnall T.A. Chen R. Proteome alterations in pancreatic ductal adenocarcinoma.Cancer Lett. 2020; 469: 429-436Google Scholar, 52Wang M. Zhu J. Lubman D.M. Gao C. Aberrant glycosylation and cancer biomarker discovery: A promising and thorny journey.Clin. Chem. Lab. Med. 2019; 57: 407-416Google Scholar). Several reports have demonstrated a number of glycosylation changes, including increased fucosylation and sialylation in pancreatic cancer progression in PDACs (53Yue T. Goldstein I.J. Hollingsworth M.A. Kaul K. Brand R.E. Haab B.B. The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays.Mol. Cell. Proteomics. 2009; 8: 1697-1707Google Scholar, 54Zhao J. Qiu W. Simeone D.M. Lubman D.M. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis.J. Proteome Res. 2007; 6: 1126-1138Google Scholar). The glycosylation changes of proteins, such as mucin 5AC, insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP), are involved in various signaling pathways, including TGF-β, tumor necrosis factor, and NF-κB pathways (55Pan S. Chen R. Tamura Y. Crispin D.A. Lai L.A. May D.H. McIntosh M.W. Goodlett D.R. Brentnall T.A. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma.J. Proteome Res. 2014; 13: 1293-1306Google Scholar, 56Nigjeh E.N. Chen R. Allen-Tamura Y. Brand R.E. Brentnall T.A. Pan S. Spectral library-based glycopeptide analysis-detection of circulating galectin-3 binding protein in pancreatic cancer.Proteomics Clin. Appl. 2017; 11: 9Google Scholar). In addition, the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), one of the enzymes that catalyze the initial step in O-linked oligosaccharide biosynthesis, can promote the growth of pancreatic cells (57Taniuchi K. Cerny R.L. Tanouchi A. Kohno K. Kotani N. Honke K. Saibara T. Hollingsworth M.A. Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.Oncogene. 2011; 30: 4843-4854Google Scholar). Moreover, some aberrations in glycosylation strongly influence the properties of tumor-associated extracellular matrix and contribute to increased cell migration and invasion (58Janik M.E. Litynska A. Vereecken P. Cell migration-the role of integrin glycosylation.Biochim. Biophys. Acta. 2010; 1800: 545-555Google Scholar, 59Leeming D.J. Bay-Jensen A.C. Vassiliadis E. Larsen M.R. Henriksen K. Karsdal M.A. Post-translational modifications of the extracellular matrix are key events in cancer progression: Opportunities for biochemical marker development.Biomarkers. 2011; 16: 193-205Google Scholar, 60Malik R. Lelkes P.I. Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer.Trends Biotechnol. 2015; 33: 230-236Google Scholar, 61Provenzano P.P. Hingorani S.R. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer.Br. J. Cancer. 2013; 108: 1-8Google Scholar). Indeed, the glycan-based cancer antigen 19 to 9 (sialyl Lewis A) has been recognized as the hallmark for the diagnosis and early detection of pancreatic cancer (62Zhang Y. Yang J. Li H. Wu Y. Zhang H. Chen W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: A meta-analysis.Int. J. Clin. Exp. Med. 2015; 8: 11683-11691Google Scholar, 63Engle D.D. Tiriac H. Rivera K.D. Pommier A. Whalen S. Oni T.E. Alagesan B. Lee E.J. Yao M.A. Lucito M.S. Spielman B. Da Silva B. Schoepfer C. Wright K. Creighton B. et al.The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice.Science. 2019; 364: 1156-1162Google Scholar, 64Reitz D. Gerger A. Seidel J. Kornprat P. Samonigg H. Stotz M. Szkandera J. Pichler M. Combination of tumour markers CEA and CA19-9 improves the prognostic prediction in patients with pancreatic cancer.J. Clin. Pathol. 2015; 68: 427-433Google Scholar, 65Nie S. Lo A. Wu J. Zhu J. Tan Z. Simeone D.M. Anderson M.A. Shedden K.A. Ruffin M.T. Lubman D.M. Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis.J. Proteome Res. 2014; 13: 1873-1884Google Scholar). A better understanding of the aberrant glycosylation of PDAC induced by TGF-β may aid the identification of potential therapeutic targets and biomarkers. However, the underlying molecular mechanisms of TGF-β signaling in SMAD4-deficient PDAC cells and their relation to glycosylation are not well understood. In this study, the PaTu-8988S (PaTu-S) cell line, a human epithelial-like PDAC cell line exhibiting KRAS activation and inactivation of SMAD4 and CDKN2A, was employed to investigate TGF-β responses and resulting glycosylation changes. Upon TGF-β treatment, PaTu-S cells were first analyzed for any effects on gene expression, morphological changes, loss of epithelial traits, and gain of mesenchymal markers. Next, by combining transcriptomic analysis of glycosylation-associated genes with mass spectrometry glycomics, we systematically assessed the TGF-β-induced alterations in the three major classes of cell surface glycans of PaTu-S, namely, N-glycans, O-glycans, and GSL-linked glycans. Furthermore, we investigated the critical role of SOX4 in TGF-β signaling and TGF-β-induced glycosylation in PaTu-S cells. This provides a stepping-stone for further studies on how glycosylation alterations contribute to TGF-β-mediated tumorigenesis of PDAC. To investigate whether the PaTu-S cell line, which lacks SMAD4, is responsive to TGF-β treatment (Fig. S1A), we performed Western blot analysis of phosphorylated SMAD2 levels of PaTu-S cells without and with TGF-β challenge. In PaTu-S cells, SMAD2 phosphorylation was significantly upregulated upon TGF-β stimulation for 1 h, which was blocked by treatment with TβRI kinase inhibitor SB431542 (Fig. 1A). The expression of TGF-β target genes, including cellular communication network factor 2 (CCN2) (66Meyer C. Godoy P. Bachmann A. Liu Y. Barzan D. Ilkavets I. Maier P. Herskind C. Hengstler J.G. Dooley S. Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes.J. Hepatol. 2011; 55: 369-378Google Scholar, 67Samarakoon R. Dobberfuhl A.D. Cooley C. Overstreet J.M. Patel S. Goldschmeding R. Meldrum K.K. Higgins P.J. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species.Cell Signal. 2013; 25: 2198-2209Google Scholar), serpin family E member 1 (SERPINE1) (68Dennler S. Itoh S. Vivien D. ten Dijke P. Huet S. Gauthier J.M. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.EMBO J. 1998; 17: 3091-3100Google Scholar, 69Samarakoon R. Higgins P.J. Integration of non-SMAD and SMAD signaling in TGF-β1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells.Thromb. Haemost. 2008; 100: 976-983Google Scholar), parathyroid hormone–like hormone (PTHLH), (70Kakonen S.M. Selander K.S. Chirgwin J.M. Yin J.J. Burns S. Rankin W.A. Grubbs B.G. Dallas M. Cui Y. Guise T.A. Transforming growth factor-β stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways.J. Biol. Chem. 2002; 277: 24571-24578Google Scholar), and SMAD7 (71Brodin G. Ahgren A. ten Dijke P. Heldin C.H. Heuchel R. Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter.J. Biol. Chem. 2000; 275: 29023-29030Google Scholar), was induced by TGF-β treatment at multiple time points (Fig. 1B). These genes can be induced by TGF-β–SMAD and non-SMAD pathways and in cells in which SMAD4 was inactivated (72Levy L. Hill C.S. Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses.Mol. Cell. Biol. 2005; 25: 8108-8125Google Scholar). In response to TGF-β stimulation for 2 days, the PaTu-S cells showed an upregulation in the expression of both the epithelial marker gene cadherin 1 (CDH1, encoding the protein E-cadherin) and the mesenchymal marker genes CDH2 (encoding the protein N-cadherin), SNAIL family transcriptional repressor 2 (SNAI2, encoding the protein SLUG), and VIM (encoding the protein VIM) (Fig. 1C). At the protein level, the mesenchymal marker N-cadherin was increased after TGF-β stimulation, whereas E-cadherin and SLUG expression levels were not significantly affected (Fig. 1D). In addition, no morphological changes of PaTu-S cells were observed after 2 days of TGF-β treatment (Fig. S1B) or even longer treatment times (data not shown). The response of PaTu-S cells to TGF-β treatment was further analyzed by immunofluorescence (IF) staining of E-cadherin and filamentous (F)-actin. We observed that TGF-β induced an increase in the formation of lamellipodia and broadened and increased flat membrane protrusions at the leading edge of cells (Fig. S1C). However, in response to TGF-β, no significant changes in E-cadherin expression and localization were observed. As an increase of lamellipodia formation has been linked to an increase in cell migration (73Krause M. Gautreau A. Steering cell migration: Lamellipodium dynamics and the regulation of directional persistence.Nat. Rev. Mol. Cell Biol. 2014; 15: 577-590Google Scholar), we next examined the TGF-β response of PaTu-S cells using an embryonic zebrafish xenograft extravasati" @default.
- W4211087729 created "2022-02-13" @default.
- W4211087729 creator A5009750348 @default.
- W4211087729 creator A5011081608 @default.
- W4211087729 creator A5030604432 @default.
- W4211087729 creator A5035613181 @default.
- W4211087729 creator A5046914597 @default.
- W4211087729 creator A5055830438 @default.
- W4211087729 creator A5065397150 @default.
- W4211087729 creator A5085660304 @default.
- W4211087729 date "2022-03-01" @default.
- W4211087729 modified "2023-10-01" @default.
- W4211087729 title "Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells" @default.
- W4211087729 cites W1182461782 @default.
- W4211087729 cites W1531792564 @default.
- W4211087729 cites W1636022999 @default.
- W4211087729 cites W1663371441 @default.
- W4211087729 cites W1967907911 @default.
- W4211087729 cites W1969201526 @default.
- W4211087729 cites W1969572743 @default.
- W4211087729 cites W1970098795 @default.
- W4211087729 cites W1975317988 @default.
- W4211087729 cites W1976484683 @default.
- W4211087729 cites W1978768249 @default.
- W4211087729 cites W1986924395 @default.
- W4211087729 cites W1988637028 @default.
- W4211087729 cites W1988942273 @default.
- W4211087729 cites W1990613923 @default.
- W4211087729 cites W1992468405 @default.
- W4211087729 cites W1993838215 @default.
- W4211087729 cites W1999133016 @default.
- W4211087729 cites W1999155906 @default.
- W4211087729 cites W1999920543 @default.
- W4211087729 cites W2011785718 @default.
- W4211087729 cites W2016097940 @default.
- W4211087729 cites W2021398192 @default.
- W4211087729 cites W2023139178 @default.
- W4211087729 cites W2030704700 @default.
- W4211087729 cites W2030798978 @default.
- W4211087729 cites W2032793090 @default.
- W4211087729 cites W2032983601 @default.
- W4211087729 cites W2040604172 @default.
- W4211087729 cites W2040793666 @default.
- W4211087729 cites W2041605103 @default.
- W4211087729 cites W2042681354 @default.
- W4211087729 cites W2043586779 @default.
- W4211087729 cites W2048083030 @default.
- W4211087729 cites W2049436594 @default.
- W4211087729 cites W2050345976 @default.
- W4211087729 cites W2051445232 @default.
- W4211087729 cites W2052617606 @default.
- W4211087729 cites W2054024439 @default.
- W4211087729 cites W2055479791 @default.
- W4211087729 cites W2060884356 @default.
- W4211087729 cites W2069282082 @default.
- W4211087729 cites W2081173982 @default.
- W4211087729 cites W2082578520 @default.
- W4211087729 cites W2083411285 @default.
- W4211087729 cites W2085324134 @default.
- W4211087729 cites W2086338128 @default.
- W4211087729 cites W2086468991 @default.
- W4211087729 cites W2086692663 @default.
- W4211087729 cites W2093093483 @default.
- W4211087729 cites W2094197406 @default.
- W4211087729 cites W2099001714 @default.
- W4211087729 cites W2100196601 @default.
- W4211087729 cites W2104100666 @default.
- W4211087729 cites W2113759297 @default.
- W4211087729 cites W2116577936 @default.
- W4211087729 cites W2126055721 @default.
- W4211087729 cites W2131936396 @default.
- W4211087729 cites W2135769782 @default.
- W4211087729 cites W2138155367 @default.
- W4211087729 cites W2148392040 @default.
- W4211087729 cites W2158519314 @default.
- W4211087729 cites W2161186807 @default.
- W4211087729 cites W2164572761 @default.
- W4211087729 cites W2164615751 @default.
- W4211087729 cites W2167246201 @default.
- W4211087729 cites W2169895148 @default.
- W4211087729 cites W2170196062 @default.
- W4211087729 cites W2170365753 @default.
- W4211087729 cites W2279167407 @default.
- W4211087729 cites W2280923709 @default.
- W4211087729 cites W2288190883 @default.
- W4211087729 cites W2296880033 @default.
- W4211087729 cites W2334353005 @default.
- W4211087729 cites W2474397968 @default.
- W4211087729 cites W2551413444 @default.
- W4211087729 cites W2570763587 @default.
- W4211087729 cites W2607037295 @default.
- W4211087729 cites W2618920555 @default.
- W4211087729 cites W2632058739 @default.
- W4211087729 cites W2768331670 @default.
- W4211087729 cites W2887205254 @default.
- W4211087729 cites W2887830846 @default.
- W4211087729 cites W2888558340 @default.
- W4211087729 cites W2888640582 @default.