Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211097138> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4211097138 abstract "Prognostics in State of Health (SoH) of lithium-ion batteries (LIBs) holds high importance in ensuring the reliability and safe electrification of battery systems such as in mobile electronic devices, electric vehicles (EVs), and grid battery energy storage systems (BESS). However, due to reasons such as the SoH dependency on a chain of historical data, both internal and external to the battery systems, the SoH estimation is not directly measured. Indirectly, several electrochemical in-situ measurement methods are employed as non-destructive determination of SoH such as ICA, DVA, and EIS, yet forming more post-mortem type of analysis. Alternatively, the machine learning (ML) techniques in data mining for predictions shown high caliber in unambiguously identifying the multi-scale, multi-factorial and complex degradation patterns of LIBs. This work investigates a couple of ML techniques, FNN and LSTM models, to train on a dataset on LIB degradation profiles and improve them for SoH predictions on new battery aging cycles. Here, a publicly available dataset at NASA website has used to train the models. Further, it is expected to explore the performance and the reliability of the LSTM for SoH predictions and plans to extend the solution for other types of batteries." @default.
- W4211097138 created "2022-02-13" @default.
- W4211097138 creator A5011208166 @default.
- W4211097138 creator A5013570188 @default.
- W4211097138 creator A5050105189 @default.
- W4211097138 creator A5071290003 @default.
- W4211097138 creator A5079994128 @default.
- W4211097138 date "2021-10-01" @default.
- W4211097138 modified "2023-09-24" @default.
- W4211097138 title "State of Health Estimation using Machine Learning for Li-ion battery on Electric Vehicles" @default.
- W4211097138 cites W2752686884 @default.
- W4211097138 cites W2924712344 @default.
- W4211097138 cites W2945527607 @default.
- W4211097138 cites W3017144359 @default.
- W4211097138 cites W3089382840 @default.
- W4211097138 cites W3092917246 @default.
- W4211097138 cites W3135148600 @default.
- W4211097138 cites W3153244028 @default.
- W4211097138 doi "https://doi.org/10.1109/vppc53923.2021.9699273" @default.
- W4211097138 hasPublicationYear "2021" @default.
- W4211097138 type Work @default.
- W4211097138 citedByCount "3" @default.
- W4211097138 countsByYear W42110971382022 @default.
- W4211097138 countsByYear W42110971382023 @default.
- W4211097138 crossrefType "proceedings-article" @default.
- W4211097138 hasAuthorship W4211097138A5011208166 @default.
- W4211097138 hasAuthorship W4211097138A5013570188 @default.
- W4211097138 hasAuthorship W4211097138A5050105189 @default.
- W4211097138 hasAuthorship W4211097138A5071290003 @default.
- W4211097138 hasAuthorship W4211097138A5079994128 @default.
- W4211097138 hasConcept C119599485 @default.
- W4211097138 hasConcept C121332964 @default.
- W4211097138 hasConcept C127413603 @default.
- W4211097138 hasConcept C129364497 @default.
- W4211097138 hasConcept C163258240 @default.
- W4211097138 hasConcept C171146098 @default.
- W4211097138 hasConcept C200601418 @default.
- W4211097138 hasConcept C206658404 @default.
- W4211097138 hasConcept C2777294910 @default.
- W4211097138 hasConcept C2778324724 @default.
- W4211097138 hasConcept C41008148 @default.
- W4211097138 hasConcept C43214815 @default.
- W4211097138 hasConcept C555008776 @default.
- W4211097138 hasConcept C62520636 @default.
- W4211097138 hasConceptScore W4211097138C119599485 @default.
- W4211097138 hasConceptScore W4211097138C121332964 @default.
- W4211097138 hasConceptScore W4211097138C127413603 @default.
- W4211097138 hasConceptScore W4211097138C129364497 @default.
- W4211097138 hasConceptScore W4211097138C163258240 @default.
- W4211097138 hasConceptScore W4211097138C171146098 @default.
- W4211097138 hasConceptScore W4211097138C200601418 @default.
- W4211097138 hasConceptScore W4211097138C206658404 @default.
- W4211097138 hasConceptScore W4211097138C2777294910 @default.
- W4211097138 hasConceptScore W4211097138C2778324724 @default.
- W4211097138 hasConceptScore W4211097138C41008148 @default.
- W4211097138 hasConceptScore W4211097138C43214815 @default.
- W4211097138 hasConceptScore W4211097138C555008776 @default.
- W4211097138 hasConceptScore W4211097138C62520636 @default.
- W4211097138 hasFunder F4320335598 @default.
- W4211097138 hasLocation W42110971381 @default.
- W4211097138 hasOpenAccess W4211097138 @default.
- W4211097138 hasPrimaryLocation W42110971381 @default.
- W4211097138 hasRelatedWork W2086816605 @default.
- W4211097138 hasRelatedWork W2088196636 @default.
- W4211097138 hasRelatedWork W2096340301 @default.
- W4211097138 hasRelatedWork W2143585755 @default.
- W4211097138 hasRelatedWork W2160990251 @default.
- W4211097138 hasRelatedWork W2383842997 @default.
- W4211097138 hasRelatedWork W2914073730 @default.
- W4211097138 hasRelatedWork W2946114485 @default.
- W4211097138 hasRelatedWork W3207899783 @default.
- W4211097138 hasRelatedWork W4283021103 @default.
- W4211097138 isParatext "false" @default.
- W4211097138 isRetracted "false" @default.
- W4211097138 workType "article" @default.