Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211116822> ?p ?o ?g. }
- W4211116822 endingPage "574" @default.
- W4211116822 startingPage "531" @default.
- W4211116822 abstract "We discuss some important rigidity theorems related to universal constructions. They usually take the form of an adjoint equivalence between suitable categories. The Loday-Ronco theorem says that the category of 0-bimonoids is equivalent to the category of species. In particular, 0-bimonoids are both free and cofree. This theorem is a special case of a more general result in which 0-bimonoids are replaced by q-bimonoids with q not a root of unity. We refer to this result as the rigidity of q-bimonoids. Invertibility of the Varchenko matrix associated to the q-distance function on faces plays a critical role here. The Leray-Samelson theorem says that the category of bicommutative bimonoids is equivalent to the category of species. In particular, bicommutative bimonoids are both free commutative and cofree cocommutative. There is also a signed analogue of Leray–Samelson which applies to signed bicommutative signed bimonoids. The Borel–Hopf theorem says that any cocommutative bimonoid is cofree on its primitive part, and dually, any commutative bimonoid is free on its indecomposable part. This result also has a signed analogue which applies to signed (co)commutative signed bimonoids. We present three broad approaches to these rigidity theorems. The first approach is elementary and proceeds by an induction on the primitive filtration of the bimonoid. Here a key role is played by how the bimonoid axiom works on the primitive part. The second approach is more direct and proceeds by constructing an explicit inverse to the appropriate universal map. The universal map is defined using a zeta function and the inverse using a Möbius function. These maps have connections to the exponential and logarithm operators. The third approach is also constructive and employs (commutative, usual or two-sided) characteristic operations by suitable families of idempotents in the (Birkhoff, Tits or q-Janus) algebra, respectively, to decompose the given bimonoid. All results in this chapter are independent of the characteristic of the base field." @default.
- W4211116822 created "2022-02-13" @default.
- W4211116822 date "2020-03-19" @default.
- W4211116822 modified "2023-09-29" @default.
- W4211116822 title "Loday–Ronco, Leray–Samelson, Borel–Hopf" @default.
- W4211116822 cites W1189915029 @default.
- W4211116822 cites W12467287 @default.
- W4211116822 cites W136934826 @default.
- W4211116822 cites W14587209 @default.
- W4211116822 cites W1482702558 @default.
- W4211116822 cites W148317991 @default.
- W4211116822 cites W1500084468 @default.
- W4211116822 cites W1502163132 @default.
- W4211116822 cites W1503569487 @default.
- W4211116822 cites W1507097962 @default.
- W4211116822 cites W1510067240 @default.
- W4211116822 cites W1510078069 @default.
- W4211116822 cites W1515059777 @default.
- W4211116822 cites W1516351814 @default.
- W4211116822 cites W1518573520 @default.
- W4211116822 cites W1525328418 @default.
- W4211116822 cites W1533780751 @default.
- W4211116822 cites W1545334247 @default.
- W4211116822 cites W1551177513 @default.
- W4211116822 cites W1552263642 @default.
- W4211116822 cites W1555326130 @default.
- W4211116822 cites W1564530086 @default.
- W4211116822 cites W1564854122 @default.
- W4211116822 cites W1567120488 @default.
- W4211116822 cites W1567985745 @default.
- W4211116822 cites W1568393038 @default.
- W4211116822 cites W1571432516 @default.
- W4211116822 cites W1579678863 @default.
- W4211116822 cites W158035142 @default.
- W4211116822 cites W1581290726 @default.
- W4211116822 cites W1585524257 @default.
- W4211116822 cites W158825563 @default.
- W4211116822 cites W1590727593 @default.
- W4211116822 cites W1596655614 @default.
- W4211116822 cites W1597292016 @default.
- W4211116822 cites W1599941638 @default.
- W4211116822 cites W1599996515 @default.
- W4211116822 cites W1599996534 @default.
- W4211116822 cites W1606664516 @default.
- W4211116822 cites W1608564739 @default.
- W4211116822 cites W1608855903 @default.
- W4211116822 cites W1618977186 @default.
- W4211116822 cites W162192092 @default.
- W4211116822 cites W1627460717 @default.
- W4211116822 cites W163742092 @default.
- W4211116822 cites W1659508438 @default.
- W4211116822 cites W1661352576 @default.
- W4211116822 cites W1672364754 @default.
- W4211116822 cites W1677393765 @default.
- W4211116822 cites W1681214895 @default.
- W4211116822 cites W169974720 @default.
- W4211116822 cites W176448034 @default.
- W4211116822 cites W1780974867 @default.
- W4211116822 cites W1804414602 @default.
- W4211116822 cites W1838480605 @default.
- W4211116822 cites W1859542606 @default.
- W4211116822 cites W1860990362 @default.
- W4211116822 cites W186403072 @default.
- W4211116822 cites W1879299483 @default.
- W4211116822 cites W194550392 @default.
- W4211116822 cites W1993588229 @default.
- W4211116822 cites W2009190506 @default.
- W4211116822 cites W2014328844 @default.
- W4211116822 cites W20328095 @default.
- W4211116822 cites W203406876 @default.
- W4211116822 cites W2034901905 @default.
- W4211116822 cites W2071355416 @default.
- W4211116822 cites W2077736408 @default.
- W4211116822 cites W207927645 @default.
- W4211116822 cites W2097453786 @default.
- W4211116822 cites W2103258360 @default.
- W4211116822 cites W2104505625 @default.
- W4211116822 cites W2123035704 @default.
- W4211116822 cites W2130762722 @default.
- W4211116822 cites W2134086356 @default.
- W4211116822 cites W2143048602 @default.
- W4211116822 cites W2152018102 @default.
- W4211116822 cites W21608702 @default.
- W4211116822 cites W2163903931 @default.
- W4211116822 cites W2316186018 @default.
- W4211116822 cites W2477522325 @default.
- W4211116822 cites W2479330493 @default.
- W4211116822 cites W2494316805 @default.
- W4211116822 cites W2495029002 @default.
- W4211116822 cites W2496340682 @default.
- W4211116822 cites W2500263197 @default.
- W4211116822 cites W2502282841 @default.
- W4211116822 cites W2517803564 @default.
- W4211116822 cites W2559978174 @default.
- W4211116822 cites W2565582626 @default.
- W4211116822 cites W2569332426 @default.
- W4211116822 cites W2608666998 @default.
- W4211116822 cites W2613752216 @default.