Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211123552> ?p ?o ?g. }
- W4211123552 endingPage "1266" @default.
- W4211123552 startingPage "1266" @default.
- W4211123552 abstract "Accurate prediction of building energy need plays a fundamental role in building design, despite the high computational cost to search for optimal energy saving solutions. An important advancement in the reduction of computational time could come from the application of machine learning models to circumvent energy simulations. With the goal of drastically limiting the number of simulations, in this paper we investigate the regression performance of different machine learning models, i.e., Support Vector Machine, Random Forest, and Extreme Gradient Boosting, trained on a small data-set of energy simulations performed on a case study building. Among the XX algorithms, the tree-based Extreme Gradient Boosting showed the best performance. Overall, we find that machine learning methods offer efficient and interpretable solutions, that could help academics and professionals in shaping better design strategies, informed by feature importance." @default.
- W4211123552 created "2022-02-13" @default.
- W4211123552 creator A5007763908 @default.
- W4211123552 creator A5014282658 @default.
- W4211123552 creator A5029602593 @default.
- W4211123552 creator A5046790968 @default.
- W4211123552 creator A5049941675 @default.
- W4211123552 creator A5054707616 @default.
- W4211123552 date "2022-02-09" @default.
- W4211123552 modified "2023-10-18" @default.
- W4211123552 title "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need" @default.
- W4211123552 cites W2126105956 @default.
- W4211123552 cites W2276120917 @default.
- W4211123552 cites W2342058041 @default.
- W4211123552 cites W2797632732 @default.
- W4211123552 cites W2999615587 @default.
- W4211123552 cites W3016472358 @default.
- W4211123552 cites W3036674374 @default.
- W4211123552 cites W3043047959 @default.
- W4211123552 cites W3102476541 @default.
- W4211123552 cites W3133484807 @default.
- W4211123552 cites W3157179107 @default.
- W4211123552 cites W3158822004 @default.
- W4211123552 cites W3174520182 @default.
- W4211123552 cites W3175819285 @default.
- W4211123552 cites W3184671559 @default.
- W4211123552 cites W3194510768 @default.
- W4211123552 cites W3198161028 @default.
- W4211123552 cites W3199489311 @default.
- W4211123552 cites W3200216379 @default.
- W4211123552 cites W3200787600 @default.
- W4211123552 cites W3205565314 @default.
- W4211123552 cites W3211916019 @default.
- W4211123552 cites W3216237996 @default.
- W4211123552 cites W3216401355 @default.
- W4211123552 doi "https://doi.org/10.3390/en15041266" @default.
- W4211123552 hasPublicationYear "2022" @default.
- W4211123552 type Work @default.
- W4211123552 citedByCount "3" @default.
- W4211123552 countsByYear W42111235522022 @default.
- W4211123552 countsByYear W42111235522023 @default.
- W4211123552 crossrefType "journal-article" @default.
- W4211123552 hasAuthorship W4211123552A5007763908 @default.
- W4211123552 hasAuthorship W4211123552A5014282658 @default.
- W4211123552 hasAuthorship W4211123552A5029602593 @default.
- W4211123552 hasAuthorship W4211123552A5046790968 @default.
- W4211123552 hasAuthorship W4211123552A5049941675 @default.
- W4211123552 hasAuthorship W4211123552A5054707616 @default.
- W4211123552 hasBestOaLocation W42111235521 @default.
- W4211123552 hasConcept C105795698 @default.
- W4211123552 hasConcept C115903097 @default.
- W4211123552 hasConcept C119599485 @default.
- W4211123552 hasConcept C119857082 @default.
- W4211123552 hasConcept C12267149 @default.
- W4211123552 hasConcept C127413603 @default.
- W4211123552 hasConcept C148483581 @default.
- W4211123552 hasConcept C154945302 @default.
- W4211123552 hasConcept C169258074 @default.
- W4211123552 hasConcept C186370098 @default.
- W4211123552 hasConcept C188198153 @default.
- W4211123552 hasConcept C2742236 @default.
- W4211123552 hasConcept C2780150128 @default.
- W4211123552 hasConcept C33923547 @default.
- W4211123552 hasConcept C41008148 @default.
- W4211123552 hasConcept C45942800 @default.
- W4211123552 hasConcept C46686674 @default.
- W4211123552 hasConcept C50644808 @default.
- W4211123552 hasConcept C70153297 @default.
- W4211123552 hasConcept C78519656 @default.
- W4211123552 hasConcept C84525736 @default.
- W4211123552 hasConceptScore W4211123552C105795698 @default.
- W4211123552 hasConceptScore W4211123552C115903097 @default.
- W4211123552 hasConceptScore W4211123552C119599485 @default.
- W4211123552 hasConceptScore W4211123552C119857082 @default.
- W4211123552 hasConceptScore W4211123552C12267149 @default.
- W4211123552 hasConceptScore W4211123552C127413603 @default.
- W4211123552 hasConceptScore W4211123552C148483581 @default.
- W4211123552 hasConceptScore W4211123552C154945302 @default.
- W4211123552 hasConceptScore W4211123552C169258074 @default.
- W4211123552 hasConceptScore W4211123552C186370098 @default.
- W4211123552 hasConceptScore W4211123552C188198153 @default.
- W4211123552 hasConceptScore W4211123552C2742236 @default.
- W4211123552 hasConceptScore W4211123552C2780150128 @default.
- W4211123552 hasConceptScore W4211123552C33923547 @default.
- W4211123552 hasConceptScore W4211123552C41008148 @default.
- W4211123552 hasConceptScore W4211123552C45942800 @default.
- W4211123552 hasConceptScore W4211123552C46686674 @default.
- W4211123552 hasConceptScore W4211123552C50644808 @default.
- W4211123552 hasConceptScore W4211123552C70153297 @default.
- W4211123552 hasConceptScore W4211123552C78519656 @default.
- W4211123552 hasConceptScore W4211123552C84525736 @default.
- W4211123552 hasIssue "4" @default.
- W4211123552 hasLocation W42111235521 @default.
- W4211123552 hasLocation W42111235522 @default.
- W4211123552 hasLocation W42111235523 @default.
- W4211123552 hasOpenAccess W4211123552 @default.
- W4211123552 hasPrimaryLocation W42111235521 @default.
- W4211123552 hasRelatedWork W3092610851 @default.