Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211127695> ?p ?o ?g. }
- W4211127695 endingPage "125" @default.
- W4211127695 startingPage "110" @default.
- W4211127695 abstract "Large-scale functional connectivity (LSFC) patterns in the brain have unique intrinsic characteristics. Abnormal LSFC patterns have been found in patients with dementia, as well as in those with mild cognitive impairment (MCI), and these patterns predicted their cognitive performance. It has been reported that patients with type 2 diabetes mellitus (T2DM) may develop MCI that could progress to dementia. We investigated whether we could adopt LSFC patterns as discriminative features to predict the cognitive function of patients with T2DM, using connectome-based predictive modeling (CPM) and a support vector machine.To investigate the utility of LSFC for predicting cognitive impairment related to T2DM more accurately and reliably.Resting-state functional magnetic resonance images were derived from 42 patients with T2DM and 24 healthy controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Patients with T2DM were divided into two groups, according to the presence (T2DM-C; n = 16) or absence (T2DM-NC; n = 26) of MCI. Brain regions were marked using Harvard Oxford (HOA-112), automated anatomical labeling (AAL-116), and 264-region functional (Power-264) atlases. LSFC biomarkers for predicting MoCA scores were identified using a new CPM technique. Subsequently, we used a support vector machine based on LSFC patterns for among-group differentiation. The area under the receiver operating characteristic curve determined the appearance of the classification.CPM could predict the MoCA scores in patients with T2DM (Pearson's correlation coefficient between predicted and actual MoCA scores, r = 0.32, P=0.0066 [HOA-112 atlas]; r = 0.32, P=0.0078 [AAL-116 atlas]; r = 0.42, P=0.0038 [Power-264 atlas]), indicating that LSFC patterns represent cognition-level measures in these patients. Positive (anti-correlated) LSFC networks based on the Power-264 atlas showed the best predictive performance; moreover, we observed new brain regions of interest associated with T2DM-related cognition. The area under the receiver operating characteristic curve values (T2DM-NC group vs. T2DM-C group) were 0.65-0.70, with LSFC matrices based on HOA-112 and Power-264 atlases having the highest value (0.70). Most discriminative and attractive LSFCs were related to the default mode network, limbic system, and basal ganglia.LSFC provides neuroimaging-based information that may be useful in detecting MCI early and accurately in patients with T2DM." @default.
- W4211127695 created "2022-02-13" @default.
- W4211127695 creator A5036504318 @default.
- W4211127695 creator A5037192036 @default.
- W4211127695 creator A5049242358 @default.
- W4211127695 creator A5072854024 @default.
- W4211127695 creator A5079185334 @default.
- W4211127695 creator A5089783012 @default.
- W4211127695 date "2022-02-15" @default.
- W4211127695 modified "2023-09-30" @default.
- W4211127695 title "Large-scale functional connectivity predicts cognitive impairment related to type 2 diabetes mellitus" @default.
- W4211127695 cites W1582275199 @default.
- W4211127695 cites W1989539075 @default.
- W4211127695 cites W2037575875 @default.
- W4211127695 cites W2050970964 @default.
- W4211127695 cites W2058046532 @default.
- W4211127695 cites W2074760672 @default.
- W4211127695 cites W2076962138 @default.
- W4211127695 cites W2086711582 @default.
- W4211127695 cites W2089572795 @default.
- W4211127695 cites W2097352912 @default.
- W4211127695 cites W2104173495 @default.
- W4211127695 cites W2108629410 @default.
- W4211127695 cites W2111902267 @default.
- W4211127695 cites W2124386285 @default.
- W4211127695 cites W2124698428 @default.
- W4211127695 cites W2145526417 @default.
- W4211127695 cites W2158078597 @default.
- W4211127695 cites W2168372372 @default.
- W4211127695 cites W2174056659 @default.
- W4211127695 cites W2337323496 @default.
- W4211127695 cites W2376904848 @default.
- W4211127695 cites W2508271373 @default.
- W4211127695 cites W2552072789 @default.
- W4211127695 cites W2554539830 @default.
- W4211127695 cites W2562017160 @default.
- W4211127695 cites W2587272693 @default.
- W4211127695 cites W2605056110 @default.
- W4211127695 cites W2732317964 @default.
- W4211127695 cites W2767532579 @default.
- W4211127695 cites W2791304632 @default.
- W4211127695 cites W2797722180 @default.
- W4211127695 cites W2886457719 @default.
- W4211127695 cites W2889198860 @default.
- W4211127695 cites W2904945948 @default.
- W4211127695 cites W2906962806 @default.
- W4211127695 cites W2920359277 @default.
- W4211127695 cites W2921949803 @default.
- W4211127695 cites W2950568021 @default.
- W4211127695 cites W2951617899 @default.
- W4211127695 cites W2981386441 @default.
- W4211127695 cites W2985196694 @default.
- W4211127695 cites W2991452181 @default.
- W4211127695 cites W3005362496 @default.
- W4211127695 cites W3083724095 @default.
- W4211127695 cites W3144118704 @default.
- W4211127695 cites W3156952280 @default.
- W4211127695 cites W4240986128 @default.
- W4211127695 cites W97601513 @default.
- W4211127695 cites W991071337 @default.
- W4211127695 doi "https://doi.org/10.4239/wjd.v13.i2.110" @default.
- W4211127695 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35211248" @default.
- W4211127695 hasPublicationYear "2022" @default.
- W4211127695 type Work @default.
- W4211127695 citedByCount "1" @default.
- W4211127695 countsByYear W42111276952023 @default.
- W4211127695 crossrefType "journal-article" @default.
- W4211127695 hasAuthorship W4211127695A5036504318 @default.
- W4211127695 hasAuthorship W4211127695A5037192036 @default.
- W4211127695 hasAuthorship W4211127695A5049242358 @default.
- W4211127695 hasAuthorship W4211127695A5072854024 @default.
- W4211127695 hasAuthorship W4211127695A5079185334 @default.
- W4211127695 hasAuthorship W4211127695A5089783012 @default.
- W4211127695 hasBestOaLocation W42111276951 @default.
- W4211127695 hasConcept C118552586 @default.
- W4211127695 hasConcept C126322002 @default.
- W4211127695 hasConcept C134018914 @default.
- W4211127695 hasConcept C154945302 @default.
- W4211127695 hasConcept C169900460 @default.
- W4211127695 hasConcept C2776632958 @default.
- W4211127695 hasConcept C2779134260 @default.
- W4211127695 hasConcept C2779483572 @default.
- W4211127695 hasConcept C2910068830 @default.
- W4211127695 hasConcept C2984915365 @default.
- W4211127695 hasConcept C41008148 @default.
- W4211127695 hasConcept C548259974 @default.
- W4211127695 hasConcept C555293320 @default.
- W4211127695 hasConcept C58471807 @default.
- W4211127695 hasConcept C71924100 @default.
- W4211127695 hasConcept C97931131 @default.
- W4211127695 hasConcept C99508421 @default.
- W4211127695 hasConceptScore W4211127695C118552586 @default.
- W4211127695 hasConceptScore W4211127695C126322002 @default.
- W4211127695 hasConceptScore W4211127695C134018914 @default.
- W4211127695 hasConceptScore W4211127695C154945302 @default.
- W4211127695 hasConceptScore W4211127695C169900460 @default.
- W4211127695 hasConceptScore W4211127695C2776632958 @default.
- W4211127695 hasConceptScore W4211127695C2779134260 @default.