Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211136113> ?p ?o ?g. }
- W4211136113 endingPage "628" @default.
- W4211136113 startingPage "621" @default.
- W4211136113 abstract "Free Access References G. B. Whitham, G. B. WhithamSearch for more papers by this author Book Author(s):G. B. Whitham, G. B. WhithamSearch for more papers by this author First published: 16 June 1999 https://doi.org/10.1002/9781118032954.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat REFERENCES Abbott, M. R. 1956. A theory of the propagation of bores in channels and rivers. Proc. Camb. Phil. Soc. 52, 344– 362. Ablowitz, M. J. 1971. Applications of slowly varying nonlinear dispersive wave theories. Studies Appl. Math. 50, 329– 344. Ablowitz, M. J. and D. J. Benney. 1970. The evolution of multiphase modes for nonlinear dispersive waves. Studies Appl. Math. 49, 225– 238. Ablowitz, M. J., D. J. Kaup, A. C. Newell, and H. Segur. 1973. The initial value solution for the Sine-Gordon equation. To be published. Akhmanov, S. A., A. P. Sukhorukov, and R. V. Khokhlov. 1966. Self-focusing and self-trapping of intense light beams in a nonlinear medium. Soviet Physics J.E.T.P. 23, 1025– 1033. Balanis, G. N. 1972. The plasma inverse problem. J. Math. Phys. 13, 1001– 1005. Barbishov, B. M. and N. A. Chernikov. 1966. Solution of the two plane wave scattering problem in a nonlinear scalar field theory of the Born-Infeld type. Soviet Physics J.E.T.P. 24, 437– 442. Barcilon, V. 1968. Axisymmetric inertial oscillations of a rotating ring of fluid. Mathematika 15, 93– 102. Barone, A., F. Esposito, C. J. Magee, and A. C. Scott. 1971. Theory and applications of the Sine-Gordon equation. Rivista del Nuovo Cimento (2) 1, 227– 267. Bateman, H. 1915. Some recent researches on the motion of fluids. Monthly Weather Review 43, 163– 170. Benjamin, T. B. 1967. Instability of periodic wavetrains in nonlinear dispersive systems. Proc. Roy. Soc. A 299, 59– 75. Benjamin, T. B. 1970. Upstream influence. J. Fluid Mech. 40, 49– 79. Benjamin, T. B., J. L. Bona, and J. J. Mahony. 1972. Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Roy. Soc. A 272, 47– 78. Benjamin, T. B. and M. J. Lighthill. 1954. On cnoidal waves and bores. Proc. Roy. Soc. A 224, 448– 460. Born, M. and L. Infeld. 1934. Foundations of a new field theory. Proc. Roy. Soc. A 144, 425– 451. Boussinesq, J. 1871. Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Comptes Rendus 72, 755– 759. Broderick, J. B. 1949. Supersonic flow round pointed bodies of revolution. Q. J. Mech. Appl. Math. 2, 98– 120. Bryson, A. E. and R. W. F. Gross. 1961. Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech. 10, 1– 16. Burgers, J. M. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171– 199. Butler, D. S. 1954. Converging spherical and cylindrical shocks. Report No. 54/54 Armament Research and Development Establishment, Ministry of Supply. Fort Halstead, Kent. Butler, D. S. 1955. Symposium on blast and shock waves. Armament Research and Development Establishment, Ministry of Supply. Fort Halstead, Kent. Chandler, R. E., R. Herman, and E. W. Montroll. 1958. Traffic dynamics: Studies in car-following. Oper. Res. 6, 165– 184. Chester, W. 1954. The quasi-cylindrical shock tube. Phil. Mag. (7) 45, 1293– 1301. Chiao, R. Y., E. Garmire, and C. H. Townes. 1964. Self-trapping of optical beams. Phys. Rev. Lett. 13, 479– 482. Chisnell, R. F. 1955. The normal motion of a shock wave through a nonuniform one-dimensional medium. Proc. Roy. Soc. A 232, 350– 370. Chisnell, R. F. 1957. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2, 286– 298. Cohen, D. S. and J. W. Blum. 1971. Acoustic wave propagation in an underwater sound channel. J. Inst. Math. Applns. 8, 186– 220. Cole, J. D. 1951. On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225– 236. Cornish, V. 1934. Ocean waves and kindred geophysical phenomena. Cambridge University Press. Courant, R. and K. O. Friedrichs. 1948. Supersonic flow and shock waves. Interscience, New York-London. Courant, R. and D. Hilbert. 1962. Methods of mathematical physics. Vol. II. Interscience, New York-London. Crapper, G. D. 1972. Nonlinear gravity waves on steady non-uniform currents. J. Fluid Mech. 52, 713– 724. Delaney, M. E. 1971. On the averaged Lagrangian technique for nonlinear dispersive waves. Ph.D. Thesis California Institute of Technology. Donnelly, R. J., R. Herman, and I. Prigogine. 1966. Non-equilibrium thermodynamics. University of Chicago Press. Dressier, R. F. 1949. Mathematical solution of the problem of roll waves in inclined open channels. Comm. Pure Appl. Math. 2, 149– 194. Dressier, R. F. 1952. Hydraulic resistance effect upon the dam-break functions. J. Res. Nat. Bur. Stand. 49, 217– 225. Earnshaw, S. 1858. On the mathematical theory of sound. Phil. Trans. 150, 133– 148. Faddeyev, L. D. 1959. The inverse problem in the quantum theory of scattering. Uspekhi Matem. Nauk 14, 57 (Transl. in J. Math. Phys. 4, 72–– 104, 1963.) Favre, H. 1935. Etude théorique et experimentale des ondes de translation dans les canaux decouverts. Dunod et Cie, Paris. Finsterwalder, S. 1907. Die Theorie der Gletscherschwankungen. Z. Gletscherkunde 2, 81– 103. Forsyth, A. R. 1959. Theory of differential equations, Vol. VI. Dover Publications, New York. Franken, P. A., A. E. Hill, C. W. Peters, and G. Weinreich. 1961. Generation of optical harmonics. Phys. Rev. Lett. 7, 118– 119. Franklin, J. N. 1972. Axisymmetric inertial oscillations of a rotating fluid. J. Math. Anal. Appl. 39, 742– 760. Friedman, M. P. 1960. An improved perturbation theory for shock waves propagating through non-uniform regions. J. Fluid Mech. 8, 193– 209. Friedman, M. P., E. J. Kane, and A. Signalla. 1963. Effects of atmosphere and aircraft motion on the location and intensity of a sonic boom. A.I.A.A.J. 1, 1327– 1335. Gardner, C. S., J. M. Greene, M. D. Kruskal, and R. M. Miura. 1967. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095– 1097. Gelfand, I. M. and B. M. Levitan. 1951. On the determination of a differential equation from its spectral function. Am. Math. Transl. (2) 1, 253– 304. Gelfand, I. M. and S. V. Fomin. 1963. Calculus of variations. Prentice-Hall, Englewood Cliffs, N. J. Giordmaine, J. A. 1962. Mixing of light beams in crystals. Phys. Rev. Lett. 8, 19– 20. Goldstein, S. 1953. On the mathematics of exchange processes in fixed columns. Parts I and II. Proc. Roy. Soc. A 219, 151– 185. Goldstein, S. and J. D. Murray. 1959. On the mathematics of exchange processes in fixed columns. Parts III, IV, V. Proc. Roy Soc. A 252, 334– 375. Greenberg, H. 1959. An analysis of traffic flow. Oper. Res. 7, 79– 85. Greenspan, H. P. 1968. The theory of rotating fluids. Cambridge University Press. Griffith, W. C., D. Brickl, and V. Blackman. 1956. Structure of shock waves in polyatomic gases. Phys. Rev. 102, 1209– 1216. Griffith, W. C. and A. Kenny. 1957. On fully dispersed shock waves in carbon dioxide. J. Fluid Mech. 3, 286– 288. Guderley, G. 1942. Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302– 312. Haus, H. A. 1966. Higher order trapped light beam solutions. Appl. Phys. Lett. 8, 128– 129. Hayes, W. D. 1968. Self-similar strong shocks in an exponential medium. J. Fluid Mech. 32, 305– 315. Hayes, W. D. 1973. Group velocity and nonlinear dispersive wave propagation. Proc. Roy. Soc. A 332, 199– 221. Herman, R., E. W. Montroll, R. B. Potts, and R. W. Rothery. 1959. Traffic dynamics: Analysis of stability in car following. Oper. Res. 7, 86– 106. Hirota, R. 1971. Exact solution of the Korteweg-deVries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192– 1194. Hirota, R. and K. Suzuki. 1970. Studies on lattice solitons by using electrical networks. J. Phys. Soc. Japan 28, 1366– 1367. Hirota, R. and K. Suzuki. 1973. Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. To appear in I.E.E.E. Proceedings. Hoffman, A. L. 1967. A single fluid model for shock formation in MHD shock tubes. J. Plasma Phys. 1, 193– 207. Holliday, D. 1973. Nonlinear gravity-capillary surface waves in a slowly varying current. J. Fluid Mech. 57, 797– 802. Hopf, E. 1950. The partial differential equation ut + uux = m̈uxx. Comm. Pure Appl. Math. 3, 201– 230. Hugoniot, H. 1889. Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits. J. l'Ecole Pofytech. 58, 1– 125. Huppert, H. E. and J. W. Miles. 1968. A note on shock diffraction by a supersonic wedge. J. Fluid Mech. 31, 455– 458. Jahnke, E. and F. Emde. 1945. Tables of functions. Dover Publications, New York. Jeffreys, H. 1925. The flow of water in an inclined channel of rectangular section. Phil. Mag. (6) 49, 793– 807. Jeffreys, H. and B. S. Jeffreys. 1956. Methods of mathematical physics, 3rd ed. Cambridge University Press. Jimenez, J. 1972. Wavetrains with small dissipation. Ph.D. Thesis, California Institute of Technology. von Karman, Th., and N. B. Moore. 1932. Resistance of slender bodies moving with supersonic velocities with special reference to projectiles. Trans. Am. Soc. Mech. Engrs. 54, 303– 310. Karpman, V. I. 1967. An asymptotic solution of the Korteweg-deVries equations. Phys. Lett. 25A, 708– 709. Karpman, V. I. and V. P. Sokolov. 1968. On solitons and the eigenvalues of the Schrodinger equation. Soviet Physics J.E.T.P. 27, 839– 845. Kay, I. and J. B. Keller. 1954. Asymptotic evaluation of the field at a caustic. J. Appl. Phys. 25, 876– 883. Kay, I. and H. E. Moses. 1956. The determination of the scattering potential from the spectral measure function. Nuovo Cimento (10) 3, 276– 304. Komentani, E. and T. Sasaki. 1958. On the stability of traffic flow. Oper. Res. (Japan) 2, 11– 26. Korteweg, D. J. and G. deVries. 1895. On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag. (5) 39, 422– 443. Kynch, G. F. 1952. A theory of sedimentation. Trans. Faraday Soc. 48, 166– 176. Lamb, G. L., Jr. 1967. Propagation of ultrashort optical pulses. Phys. Lett. 25A, 181– 182. Lamb, G. L., Jr. 1971. Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod Phys. 43, 99– 124. Lamb, G. L., Jr. 1973. Coherent optical pulse propagation as an inverse problem. To be published. Lamb, H. 1932. Hydrodynamics, 6th ed. Cambridge University Press. Landau, L. D. 1945. On shock waves at large distances from the place of their origin. Soviet Journal of Physics 9, 496– 500. Landau, L. D. and E. M. Lifshitz. 1958. Quantum mechanics—Nonrelativistic theory. Pergamon Press Addison-Wesley Publishing Co., Reading, Mass. Landau, L. D. and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon Press Addison-Wesley Publishing Co., Reading, Mass. Landau, L. D. and E. M. Lifshitz. 1960. Electrodynamics of continuous media. Pergamon Press Addison-Wesley Publishing Co., Reading, Mass. Landau, L. D. and E. M. Lifshitz. 1960. Mechanics. Pergamon Press Addison-Wesley Publishing Co., Reading, Mass. Laporte, O. 1954. On the interaction of a shock with a constriction. Rep. No. LA-1740 Los Alamos Scientific Laboratory. Lax, P. D. 1968. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467– 490. Lighthill, M. J. 1945. Supersonic flow past bodies of revolution. R&M 2003 Aeronautical Research Council Ministry of Supply H. M. Stationery Office, London. Lighthill, M. J. 1948. The position of the shock wave in certain aerodynamic problems. Q. J. Mech. Appl. Math. 1, 309– 318. Lighthill, M. J. 1949. A technique for rendering approximate solutions to physical problems uniformly valid. Phil. Mag. (7) 44, 1179– 1201. Lighthill, M. J. 1949. The diffraction of blast I. Proc. Roy. Soc. A 198, 454– 470. Lighthill, M. J. 1956. Viscosity effects in sound waves of finite amplitude. In Surveys in mechanics, Edited by G. K. Batchelor and R. M. Davies. Cambridge University Press. Lighthill, M. J. 1957. River waves. Naval hydrodynamics publication 515 National Academy of Sciences-National Research Council. Lighthill, M. J. and G. B. Whitham. 1955. On kinematic waves: I. Flood movement in long rivers; II. Theory of traffic flow on long crowded roads. Proc. Roy. Soc. A 229, 281– 345. Longuet-Higgins, M. S. and R. W. Stewart. 1960. Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8, 565– 583. Longuet-Higgins, M. S. and R. W. Stewart. 1961. The changes in amplitude of short gravity waves on steady nonuniform currents. J. Fluid Mech. 10, 529– 549. Lowell, S. C. 1970. Wave propagation in monatomic lattices with anharmonic potential. Proc. Roy. Soc. A 318, 93– 106. Luke, J. C. 1966. A perturbation method for nonlinear dispersive wave problems. Proc. Roy. Soc. A 292, 403– 412. Luke, J. C. 1967. A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395– 397. Maker, P. D., R. W. Terhune, M. Nisenoff, and C. M. Savage. 1962. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8, 21– 22. Marchenko, V. A. 1955. Dokl. Acad. Nauk SSSR 104, 433. Marshall, W. 1955. The structure of magnetohydrodynamic shock waves. Proc. Roy. Soc. A 233, 367– 376. McCowan, J. 1894. On the highest wave of permanent type. Phil. Mag. (5) 38, 351– 358. Michcll, A. G. M. 1893. The highest waves in water. Phil. Mag. (5) 36, 430– 437. Moeckel, W. E. 1952. Interaction of oblique shock waves with regions of variable pressure, entropy and energy. Tech. Note 2725 Nat. Adv. Comm Aero, Washington, Mowbray, D. E. and B. S. H. Rarity. 1967a. A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 1– 16. Mowbray, D. E. and B. S. H. Rarity. 1967b. The internal wave pattern produced by a sphere moving vertically in a density stratified liquid. J. Fluid Mech. 30, 489– 496. Newell, G. F. 1961. Nonlinear effects in the dynamics of car-following. Oper. Res. 9, 209– 229. Nigam, S. D. and P. D. Nigam. 1962. Wave propagation in rotating liquids. Proc. Roy. Soc. A 266, 247– 256. Nye, J. F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. Roy. Soc. A 256, 559– 584. Nye, J. F. 1963. The response of a glacier to changes in the rate of nourishment and wastage. Proc. Roy. Soc. A 275, 87– 112. Ostrowskii, L. A. 1967. Propagation of wave packets and space-time self-focusing in a nonlinear medium. Soviet Physics J.E.T.P. 24, 797– 800. Ostrowskii, L. S. 1968. The theory of waves or envelopes in nonlinear media. U.R.S.I. Symposium on electromagnetic waves VI, Stresa, Italy. Penney, W. G. and A. T. Price. 1952. Finite periodic stationary gravity waves in a perfect liquid. Phil. Trans. Roy. Soc. A 244, 254– 284. Perring, J. K. and T. H. R. Skyrme. 1962. A model unified field equation. Nucl. Phys. 31, 550– 555. Perry, R. W. and A. Kantrowitz. 1951. The production and stability of converging shock waves. J. Appl. Phys. 22, 878– 886. Petrovsky, I. G. 1954. Lectures on partial differential equations. Interscience, New York-London. Phillips, O. M. 1967. Theoretical and experimental studies of gravity wave interactions. Proc. Roy. Soc. A 299, 104– 119. Poisson, S. D. 1807. Memoire sur la theorie du son. J. l'Ecole Poly tech. 7, 319– 392. Rankine, W. J. M. 1870. On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. 160, 277– 288. Rarity, B. S. H. 1967. The two-dimensional wave pattern produced by a disturbance moving in an arbitrary density stratified liquid. J. Fluid Mech. 30, 329– 336. Rayleigh, Lord, 1910. Aerial plane waves of finite amplitude. Proc. Roy. Soc. A 84, 247– 284. ( Papers 5, 573–– 610.) Rayleigh, Lord, 1876. On waves. Phil. Mag. (5) 1, 257– 279. ( Papers 1, 251–– 271.) Richards, P. I. 1956. Shock waves on the highway. Oper. Res. 4, 42– 51. Riemann, B. 1858. Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Göttingen Abhandlungen, Vol. viii, p. 43. (Werke, 2te Aufl., Leipzig, 1892, p. 157.) Sakurai, A. 1960. On the problem of a shock wave arriving at the edge of a gas. Comm. Pure Appl. Math. 13, 353– 370. Schiff, L. I. 1951. Nonlinear meson theory of nuclear forces. Phys. Rev. 84, 1– 11. Scott, A. C. 1970. Active and nonlinear wave propagation in electronics. Wiley-Interscience, New York. Scott Russell, J. 1844. Report on waves. Brit. Assoc. Rep. Seddon, J. A. 1900. River hydraulics. Trans. Am. Soc. Civ. Engrs. 43, 179– 243. Sedov, L. I. 1959. Similarity and dimensional methods in mechanics. Academic Press, New York, London. Segur, H. 1973. The Korteweg-deVries equation and water waves. I. Solutions of the equation. J. Fluid Mech. 59, 721– 736. Seliger, R. L. 1968. A note on the breaking of waves. Proc. Roy. Soc. A 303, 493– 496. Seliger, R. L. and G. B. Whitham. 1968. Variational principles in continuum mechanics. Proc. Roy. Soc. A 305, 1– 25. Shercliff, J. A. 1969. Anisotropic surface waves under a vertical magnetic force. J. Fluid Mech. 38, 353– 364. Skews, B. W. 1967. The shape of a diffracting shock wave. J. Fluid Mech. 29, 297– 304. Small, R. D. 1972. Nonlinear dispersive waves in nonlinear optics. Ph.D. Thesis, California Institute of Technology. Snodgrass, F. E., et al. 1966. Propagation of ocean swell across the pacific. Phil. Trans. Roy. Soc. A 259, 431– 497. Sommerfeld, A. 1954. Optics. Academic Press, New York. Stokes, G. G. 1847. On the theory of oscillatory waves. Camb. Trans. 8, 441– 473. ( Papers 1, 197–– 229.) Stokes, G. G. 1848. On a difficulty in the theory of sound. Phil. Mag. (3) 23, 349– 356. ( Papers 2, 51–– 58.) Taylor, G. I. 1910. The conditions necessary for discontinuous motion in gases. Proc. Roy. Soc. A 84, 371– 377. Taylor, G. I. 1922. The motion of a sphere in a rotating liquid. Proc. Roy. Soc. A 102, 180– 189. Taylor, G. I. 1946. The air wave surrounding an expanding sphere. Proc. Roy. Soc. A 186, 273– 292. Taylor, G. I. 1950. The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. Roy. Soc. A 201, 159– 174. Taylor, G. I. 1953. An experimental study of standing waves. Proc. Roy. Soc. A 218, 44– 59. Taylor, G. I. 1959. The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. Roy. Soc. A 253, 296– 312. Taylor, G. I. and J. W. Maccoll. 1933. The air pressure on a cone moving at high speeds. Proc. Roy. Soc. A 139, 278– 311. Thomas, H. C. 1944. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664– 1666. Toda, M. 1967a. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22, 431– 436. Toda, M. 1967b. Wave propagation in anharmonic lattices. J. Phys. Soc. Japan 23, 501– 506. Ursell, F. 1960a. On Kelvin's ship wave pattern. J. Fluid Mech. 8, 418– 431. Ursell, F. 1960b. Steady wave patterns on a non-uniform steady fluid flow. J. Fluid Mech. 9, 333– 346. Weertman, J. 1958. Union géodesique and geophysique Internationale, association internationale d'hydrologie scientifique. Symposium de Chamonix, Sept. 1958, pp. 162– 168. Whitham, G. B. 1950a. The behaviour of supersonic flow past a body of revolution, far from the axis. Proc. Roy. Soc. A 201, 89– 109. Whitham, G. B. 1950b. The propagation of spherical blast. Proc. Roy. Soc. A 203, 571– 581. Whitham, G. B. 1952. The flow pattern of a supersonic projectile. Comm, Pure Appl. Math. 5, 301– 348. Whitham, G. B. 1955. The effects of hydraulic resistance in the dam-break problem. Proc. Roy. Soc. A 227, 399– 407. Whitham, G. B. 1956. On the propagation of weak shock waves. J. Fluid Mech. 1, 290– 318. Whitham, G. B. 1957. A new approach to problems of shock dynamics. Part I. Two-dimensional problems. J. Fluid Mech. 2, 146– 171. Whitham, G. B. 1958. On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4, 337– 360. Whitham, G. B. 1959a. Some comments on wave propagation and shock wave structure with application to magnetohydrodynamics. Comm. Pure Appl. Math. 12, 113– 158. Whitham, G. B. 1959b. A new approach to problems of shock dynamics. Part II. Three-dimensional problems. J. Fluid Mech. 5, 369– 386. Whitham, G. B. 1965. A general approach to linear and nonlinear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273– 283. Whitham, G. B. 1967. Nonlinear dispersion of water waves. J. Fluid Mech. 27, 399– 412. Whitham, G. B. 1968. A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449– 453. Whitham, G. B. 1970. Two-timing, variational principles and waves. J. Fluid Mech. 44, 373– 395. Wu, T. T. 1961. A note on the stability condition for certain wave propagation problems. Comm. Pure Appl. Math. 14, 745– 747. Yariv, A. 1967. Quantum electronics. John Wiley & Sons, New York. Zakharov, V. E. and A. B. Shabat. 1972. Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media. Soviet Physics J.E.T.P. 34, 62– 69. Zeldovich, Ya. B. and Yu. P. Raizer. 1966. Physics of shock waves and high temperature hydrodynamic phenomena. Academic Press, New York. Linear and Nonlinear Waves ReferencesRelatedInformation" @default.
- W4211136113 created "2022-02-13" @default.
- W4211136113 date "1999-06-16" @default.
- W4211136113 modified "2023-09-27" @default.
- W4211136113 title "References" @default.
- W4211136113 cites W1057021034 @default.
- W4211136113 cites W1963695388 @default.
- W4211136113 cites W1963827181 @default.
- W4211136113 cites W1965289845 @default.
- W4211136113 cites W1966841514 @default.
- W4211136113 cites W1971703600 @default.
- W4211136113 cites W1975541549 @default.
- W4211136113 cites W1979690402 @default.
- W4211136113 cites W1979722387 @default.
- W4211136113 cites W1981922995 @default.
- W4211136113 cites W1984846838 @default.
- W4211136113 cites W1988942018 @default.
- W4211136113 cites W1989760690 @default.
- W4211136113 cites W1990714520 @default.
- W4211136113 cites W1992015651 @default.
- W4211136113 cites W1992519045 @default.
- W4211136113 cites W1998243239 @default.
- W4211136113 cites W1998453803 @default.
- W4211136113 cites W2000382398 @default.
- W4211136113 cites W2000867446 @default.
- W4211136113 cites W2001249537 @default.
- W4211136113 cites W2001273064 @default.
- W4211136113 cites W2005380085 @default.
- W4211136113 cites W2011356367 @default.
- W4211136113 cites W2021248492 @default.
- W4211136113 cites W2022491140 @default.
- W4211136113 cites W2023325497 @default.
- W4211136113 cites W2024892139 @default.
- W4211136113 cites W2027348889 @default.
- W4211136113 cites W2030669316 @default.
- W4211136113 cites W2032137277 @default.
- W4211136113 cites W2032166319 @default.
- W4211136113 cites W2036113683 @default.
- W4211136113 cites W2036122517 @default.
- W4211136113 cites W2037585710 @default.
- W4211136113 cites W2038770047 @default.
- W4211136113 cites W2038825312 @default.
- W4211136113 cites W2039117838 @default.
- W4211136113 cites W2039232030 @default.
- W4211136113 cites W2040965222 @default.
- W4211136113 cites W2042918886 @default.
- W4211136113 cites W2043625844 @default.
- W4211136113 cites W2045239004 @default.
- W4211136113 cites W2045384647 @default.
- W4211136113 cites W2047688790 @default.
- W4211136113 cites W2047791251 @default.
- W4211136113 cites W2048507853 @default.
- W4211136113 cites W2049077761 @default.
- W4211136113 cites W2049736146 @default.
- W4211136113 cites W2050732421 @default.
- W4211136113 cites W2050826884 @default.
- W4211136113 cites W2051194611 @default.
- W4211136113 cites W2051842180 @default.
- W4211136113 cites W2055141628 @default.
- W4211136113 cites W2055170306 @default.
- W4211136113 cites W2056262447 @default.
- W4211136113 cites W2063364940 @default.
- W4211136113 cites W2064091103 @default.
- W4211136113 cites W2064739644 @default.
- W4211136113 cites W2067958053 @default.
- W4211136113 cites W2069117102 @default.
- W4211136113 cites W2069678433 @default.
- W4211136113 cites W2070668048 @default.
- W4211136113 cites W2071822983 @default.
- W4211136113 cites W2071969188 @default.
- W4211136113 cites W2074555788 @default.
- W4211136113 cites W2075935919 @default.
- W4211136113 cites W2081236947 @default.
- W4211136113 cites W2084458973 @default.
- W4211136113 cites W2085756315 @default.
- W4211136113 cites W2086830744 @default.
- W4211136113 cites W2089927820 @default.
- W4211136113 cites W2089996117 @default.
- W4211136113 cites W2090181333 @default.
- W4211136113 cites W2093921901 @default.
- W4211136113 cites W2094730671 @default.
- W4211136113 cites W2095723741 @default.
- W4211136113 cites W2097730478 @default.
- W4211136113 cites W2097820936 @default.
- W4211136113 cites W2100762910 @default.
- W4211136113 cites W2111783528 @default.
- W4211136113 cites W2116508664 @default.
- W4211136113 cites W2120135064 @default.
- W4211136113 cites W2123567481 @default.
- W4211136113 cites W2127387067 @default.
- W4211136113 cites W2130789448 @default.
- W4211136113 cites W2133741578 @default.
- W4211136113 cites W2134061155 @default.
- W4211136113 cites W2135590575 @default.
- W4211136113 cites W2138628627 @default.
- W4211136113 cites W2143520981 @default.
- W4211136113 cites W2145355336 @default.
- W4211136113 cites W2146527992 @default.