Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211151919> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4211151919 abstract "Non-Parametric Bayesian Networks (NPBNs) are graphical tools for statistical inference widely used for reliability analysis and risk assessment. However, few hydrological applications can be found in the literature. We therefore explore here the potential of NPBNs to reproduce catchment-scale hydrological dynamics by investigating 240 catchments with contrasting climate across the United States from the CAMELS dataset. First, two networks, one unsaturated (UN-1) and one saturated network (SN-1) based on hydro-meteorological variables are used to generate monthly maximum river discharge considering the catchment as a single element. Then, the saturated network SN-C, based on SN-1 but additionally including physical catchments attributes, is used to model a group of catchments and infer monthly maximum river discharge in ungauged basins based on the attributes similarity. The results indicate that the UN-1 model is suitable for catchments with a positive dependence between precipitation and river discharge, while the SN-1 model can reproduce discharge also in catchments with negative dependence. Furthermore, in ~40 % of the catchments analysed the SN-1 model can reproduce statistical characteristics of discharge, tested via the Kolmogorov-Smirnov (KS) statistic, and Nash-Sutcliffe Efficiencies (NSE) ≥ 0.5. Such catchments receive precipitation mainly in winter and are located in energy-limited regions at low to moderate elevation. Further, the SN-C model, in which the inference process benefits from catchment similarity, can reproduce river discharge statistics in ~10 % of the catchments analysed. However, in these catchments a common dominant physical attribute was not identified. In this study, we show that, once a NPBNs is defined, it is straightforward to infer discharge, when the remaining variables are known. We also show that it is possible to extend the network itself with additional variables, i.e. going from SN-1 to SN-C. Despite these advantages, the results also suggest that there are considerable challenges in defining a suitable NPBN, in particular for predictions in ungauged basins. These are mainly due to the discrepancies in the time scale of the different physical processes generating discharge, the presence of a “memory” in the system, and the Gaussian-copula assumption used by NPBNs for modelling multivariate dependence." @default.
- W4211151919 created "2022-02-13" @default.
- W4211151919 creator A5023947334 @default.
- W4211151919 date "2021-09-07" @default.
- W4211151919 modified "2023-09-27" @default.
- W4211151919 title "Reply on RC1" @default.
- W4211151919 doi "https://doi.org/10.5194/hess-2021-229-ac1" @default.
- W4211151919 hasPublicationYear "2021" @default.
- W4211151919 type Work @default.
- W4211151919 citedByCount "0" @default.
- W4211151919 crossrefType "peer-review" @default.
- W4211151919 hasAuthorship W4211151919A5023947334 @default.
- W4211151919 hasBestOaLocation W42111519191 @default.
- W4211151919 hasConcept C105795698 @default.
- W4211151919 hasConcept C107054158 @default.
- W4211151919 hasConcept C126645576 @default.
- W4211151919 hasConcept C127313418 @default.
- W4211151919 hasConcept C153294291 @default.
- W4211151919 hasConcept C187320778 @default.
- W4211151919 hasConcept C205649164 @default.
- W4211151919 hasConcept C33923547 @default.
- W4211151919 hasConcept C39432304 @default.
- W4211151919 hasConcept C58640448 @default.
- W4211151919 hasConcept C76886044 @default.
- W4211151919 hasConcept C81660378 @default.
- W4211151919 hasConcept C89128539 @default.
- W4211151919 hasConceptScore W4211151919C105795698 @default.
- W4211151919 hasConceptScore W4211151919C107054158 @default.
- W4211151919 hasConceptScore W4211151919C126645576 @default.
- W4211151919 hasConceptScore W4211151919C127313418 @default.
- W4211151919 hasConceptScore W4211151919C153294291 @default.
- W4211151919 hasConceptScore W4211151919C187320778 @default.
- W4211151919 hasConceptScore W4211151919C205649164 @default.
- W4211151919 hasConceptScore W4211151919C33923547 @default.
- W4211151919 hasConceptScore W4211151919C39432304 @default.
- W4211151919 hasConceptScore W4211151919C58640448 @default.
- W4211151919 hasConceptScore W4211151919C76886044 @default.
- W4211151919 hasConceptScore W4211151919C81660378 @default.
- W4211151919 hasConceptScore W4211151919C89128539 @default.
- W4211151919 hasLocation W42111519191 @default.
- W4211151919 hasOpenAccess W4211151919 @default.
- W4211151919 hasPrimaryLocation W42111519191 @default.
- W4211151919 hasRelatedWork W1977554050 @default.
- W4211151919 hasRelatedWork W2054917634 @default.
- W4211151919 hasRelatedWork W2118965173 @default.
- W4211151919 hasRelatedWork W2137428062 @default.
- W4211151919 hasRelatedWork W2364472247 @default.
- W4211151919 hasRelatedWork W2385903065 @default.
- W4211151919 hasRelatedWork W2392512544 @default.
- W4211151919 hasRelatedWork W2900361204 @default.
- W4211151919 hasRelatedWork W3217690814 @default.
- W4211151919 hasRelatedWork W909444614 @default.
- W4211151919 isParatext "false" @default.
- W4211151919 isRetracted "false" @default.
- W4211151919 workType "peer-review" @default.