Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211159125> ?p ?o ?g. }
- W4211159125 endingPage "454" @default.
- W4211159125 startingPage "441" @default.
- W4211159125 abstract "Free Access References Ramalingam Shanmugam, Ramalingam ShanmugamSearch for more papers by this authorRajan Chattamvelli, Rajan ChattamvelliSearch for more papers by this author Book Author(s):Ramalingam Shanmugam, Ramalingam ShanmugamSearch for more papers by this authorRajan Chattamvelli, Rajan ChattamvelliSearch for more papers by this author First published: 31 July 2015 https://doi.org/10.1002/9781119047063.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Stevens SS. On the theory of scales of measurement. Science 1946; 103: 677– 680. Chattamvelli R. Data Mining Algorithms. Oxford: Alpha Science; 2011. Yilmaz E, Aslam JA, Robertson S. A new rank correlation coefficient for information retrieval. SIGIR '08: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; Singapore; 2008. Chattamvelli R. A note on the noncentral beta distribution function. Am Stat 1995; 49: 231– 234. Chattamvelli R. On the doubly noncentral F distribution. Comput Stat Data Anal 1996; 20: 481– 489. Chattamvelli R, Shanmugam R. Efficient computation of the noncentral χ2 distribution. Commun Stat Simul Comput 1995; 24(3): 675– 689. Chattamvelli R, Shanmugam R. Computing the noncentral beta distribution function, algorithm AS310. Appl Stat 1998; 41: 146– 156. Knuth DE. Fundamental Algorithms. Volume 1. 3rd ed. Reading (MA): Addison-Wesley; 1997. xx+650 pp. ISBN 0-201-89683-4 Pearson Education Inc.; 1997. Jones MC. On some expressions for variance, covariance, skewness and L-moments. J Stat Plann Inference 2004; 126: 97– 106. Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993; 11: 63– 90. Kerber R. Chimerge: discretization of numeric attributes. Proceedings of 10th National Joint Conference on AI. San Jose (CA): MIT Press; 1992. p 123– 128. Cho DW, Im KS. A test of normality using Geary's skewness and kurtosis statistics. Econ Lett 2002; 53: 247– 251. Jarque CM, Bera AK. Efficient tests for normality, homoscedasticity, and serial independence of regression residuals. Econ Lett 1980; 6(3): 255– 259. Lin CC, Mudholkar GS. A simple test for normality against asymmetric alternatives. Biometrika 1980; 67: 455– 461. Zeng A, Gao Q-G, Pan D. A Global unsupervised data discretization algorithm based on collective correlation coefficient. IEA/AIE; Syracuse University, New York; 2011. p 146– 155. Lustgarten JL, Visweswaran S, Gopalakrishnan V, Cooper GF. Application of an efficient Bayesian discretization method to biomedical data. BMC Bioinformatics (BMCBI) 2011; 12: 309– 311. Battiato S, Cantone D, Catalano D, Cincotti G, Hofri M. An efficient algorithm for the approximate median selection problem. 4th Italian Conference, CIAC, Rome. Volume 1767, Lecture Notes in CS. Rome, Italy: Springer; 2000. p 226– 240. Groeneveld RA, Meeden G. The mode, median and mean inequality. Am Stat 1977; 31(3): 120– 121. Hippel V, Paul T. Mean median, skew: correcting a textbook rule. J Stat Educ 2005; 13(2): 95. Mercer PR. Refined arithmetic, geometric and harmonic mean inequalities. Rocky Mt J Math 2003; 33(4): 1459– 1464. Weisberg HF. Central Tendency and Variablity. Newbury Park (CA): Sage Publishers; 1992. Chattamvelli R. Statistical Algorithms. Oxford: Alpha Science; 2012. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. Cambridge (MA): MIT Press; 2009. Fabian Z. New measures of central tendency and variability of continuous distributions. Commun Stat Theory Methods 2008; 37(2): 159– 174. Tsimashenka I, Knottenbelt W, Harrison P. Controlling variability in split-merge systems. Analytical and Stochastic Modeling Techniques and Applications. Lecture Notes in Computer Science 7314. New York: Springer; 2012. Cook D, Swayne DF. Interactive and Dynamic Graphics for Data Analysis. New York: Springer; 2007. Oja H. Descriptive statistics for multivariate distributions. Stat Probab Lett 1983; 33: 327– 333. Seier E, Bonett DG. A Polyplot for visualizing location, spread, skewness, and kurtosis. Am Stat 2011; 65(4): 258– 261. Yatracos YG. Variance and clustering. Proc Am Math Soc 1998; 126: 1177– 1179. Boos DD, Brownie C. Comparing variances and other measures of dispersion. Stat Sci 2004; 19(4): 571– 578. Chan TF, Golub GH, Leveque R. Algorithms for computing the sample variance: analysis and recommendations. Am Stat 1983; 37(3): 242– 247. Forkman J, Verrill S. The distribution of McKay's approximation for the coefficient of variation. Stat Probab Lett 2008; 78(1): 10– 14. Croucher JS. An upper bound on the value of the standard deviation. Teach Stat 2004; 26(2): 54– 55. Mcleod AJ, Henderson GR. Bounds for the sample standard deviation. Teach Stat 1984; 6(3): 72– 76. Thomson GW. Bounds for the ratio of range to standard deviation. Biometrika 1955; 42: 268– 269. Shiffler RE, Harsha PD. Upper and lower bounds for the sample standard deviation. Teach Stat 1980; 2(3): 84– 86. Joarder AH, Latif RM. Standard deviation for small samples. Technical report series, TR329. Dhahran, Saudi Arabia: King Fahd University of Petroleum and Minerals; 2005. Glasser GJ. Variance formulas for the mean difference and coefficient of concentration. J Am Stat Assoc 1962; 57: 648– 654. Joarder AH. On some representations of sample variance. Int J Math Educ Sci Technol 2002; 33(5): 772– 784. Heffernan P. New measures of spread and a simpler formula for the normal distribution. Am Stat 1988; 42(2): 100– 102. Zhang Y, Wu H, Cheng L. Some new deformation formulas about variance and covariance. Proceedings of 4th International Conference on Modelling, Identification and Control; Wuhan, China; 2012. p 987– 992. Domingo-Ferrer J, Solanas A. A measure of variance for hierarchical nominal attributes. Inf Sci 2008; 178(24): 4644– 4655. Mandrekar JN, Mandrekar SJ, Cha SS. Evaluating Methods of Symmetry. Rochester (MN): Mayo Clinic; 2004. Petitjean M. Chirality and symmetry measures: a transdisciplinary review. Entropy 2003; 5(3): 271– 312. Székely GJ, Móri TF. A characteristic measure of asymmetry and its application for testing diagonal symmetry. Commun Stat Theory Methods 2001; 30(8,9): 1633– 1639. Shanmugam R. Is Poisson dispersion diluted or over-saturated? An index is created to answer. Am J Biostat 2011; 2(2): 56– 60. Hildebrand DK. Kurtosis measures modality? Am Stat 1971; 25: 42– 43. Holgersson HET. A modified skewness measure for testing asymmetry. Commun Stat Simul Comput 2010; 39(2): 335– 346. Tabachnick BG, Fidell LS. Using Multivariate Statistics. 3rd ed. New York: HarperCollins; 1996. Royston P. Which measures of skewness and kurtosis are best? Stat Med 1992; 11: 333– 343. Pearson K. Skew variation, a rejoinder. Biometrika 1905; 4: 169– 212. Balanda KP, MacGillivray HL. Kurtosis and spread. Can J Stat 1990; 18: 17– 30. Hosking JMR. Moments or L-moments? An example comparing two measures of distributional shape. Am Stat 1992; 46: 186– 189. Harremoës P. An Interpretation of Squared Skewness Minus Excess Kurtosis. New York: Elsevier Science; 2002. MacGillivray HL. Skewness and asymmetry: measures and orderings. Ann Stat 1986; 14: 994– 1011. Bowley AL. Elements of Statistics. New York: Scribner; 1920. MacGillivray HL. Shape properties of the g-, h-, and Johnson families. Commun Stat Theory Methods 1992; 21: 1233– 1250. Liu W, Chawla S. A quadratic-mean based supervised learning model for managing data skewness. SDM; Mesa (AZ); 2011. p 188– 198. van Zwet WR. Convex Transformations of Random Variables. The Netherlands: Mathematisch Centrum Amsterdam; 2005. Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions. Volume 2. New York: John Wiley and Sons; 1998. Seier E, Bonett D. Two families of kurtosis measures. Metrika 2003; 58: 59– 70. Mudholkar GS, Natarajan R. The inverse Gaussian models: analogues of symmetry, skewness and kurtosis. Ann Inst Stat Math 2002; 54(1): 138– 154. Brys G, Hubert M, Struyf A. A comparison of some new measures of skewness. International Conference on Robust Statistics. Heidelberg: Physica-Verlag; 2011. p 97– 112. Wang J. On nonparametric multivariate scale, kurtosis and tail-weight measures [PhD thesis]. Department of Mathematical Sciences, University of Texas at Dallas; 2003. Chissom BS. Interpretation of the kurtosis statistic. Am Stat 1970; 24(4): 19– 22. Darlington RB. Is kurtosis really “peakedness”? Am Stat 1970; 24(2): 19– 22. Fung T, Seneta E. Tailweight quantiles and kurtosis: a study of competing distributions. Oper Res Lett 2007; 35(4): 448– 454. Horn PS. A measure for peakedness. Am Stat 1983; 37(1): 55– 56. Moors JJA. The meaning of kurtosis. Am Stat 1986; 40: 283– 284. Oja H. On location, scale, skewness and kurtosis of univariate distributions. Scand J Stat 1981; 8: 154– 168. Stavig GR. A robust measure of kurtosis. Percept Mot Skills 1982; 55: 666. Groeneveld RA, Meeden G. Measuring skewness and kurtosis. Statistician 1984; 38: 391– 399. Groeneveld RA. A class of quantile measures for kurtosis. Am Stat 1998; 52(3): 325– 329. Ruppert D. What is kurtosis? An influence function approach. Am Stat 1987; 41(1): 1– 5. Finucan HM. A note on kurtosis. J R Stat Soc Ser B 1964; 26: 111– 112. MacGillivray HL, Balanda KP. The relationships between skewness and kurtosis. Aust J Stat 1988; 30(3): 319– 337. Balanda KP, MacGillivray HL. Kurtosis: a critical review. Am Stat 1988; 42: 111– 119. DeCarlo LT. On the meaning and use of kurtosis. Psychol Methods 1997; 2(3): 292– 307. Pearson K. Mathematical contributions to the theory of evolution,-xix; second supplement to a memoir on skew variation. Philos Trans R Soc Lond A 1916; 216: 429– 457. Klaassen CAJ, Mokveld PJ, van Es B. Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions. Stat Probab Lett 2000; 50(2): 131– 135. Rohatgi VK, Székely GJ. Sharp inequalities between skewness and kurtosis. Stat Probab Lett 1989; 8(4): 297– 299. Gupta AK, Móri TF, Székely GJ. Testing for Poissonity-normality vs. other infinite divisibility. Stat Probab Lett 1994; 19: 245– 248. Teuscher F, Guiard V. Sharp inequalities between skewness and kurtosis for unimodal distributions. Stat Probab Lett 1995; 22(3): 257– 260. Tracy RL, Doane DP. Using the studentized range to assess kurtosis. J Appl Stat 2005; 32(3): 271– 280. Fiori AM. Measuring kurtosis by right and left inequality orders. Commun Stat Theory Methods 2008; 37(17): 2665– 2680. Jones MC, Rosco JF, Pewsey A. Skewness-invariant measures of kurtosis. Am Stat 2011; 65(2): 89– 95. Vrabie V, Granjon P, Serviere C. Spectral kurtosis: from definition to application. Workshop on Nonlinear Signal and Image Processing, NSIP03; Grado-Trieste, Italy; 2003. Rao VB. Kurtosis as a metric in the assessment of gear damage. Shock Vib Dig 1999; 31(6): 443– 448. Vrabie V, Granjon P, Maroni C-S, Leprettre B. Application of spectral kurtosis to bearing fault detection in induction motors. 5th International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques (Surveillance5); 2004. Senlis. p 1– 10. Pakrashi V, Basu B, O'Connor A. A structural damage detector and calibrator using a wavelet kurtosis technique. Eng Struct 2007; 29: 2097– 2108. Randall RB. Applications of spectral kurtosis in machine diagnostics and prognostics. Key Eng Mater Damage Assess Struct 2005; 6: 21– 36. Antoni J. The spectral kurtosis of nonstationary signals: formalization, some properties, and application. 12th European Signal Processing Conference; Vienna, Austria; 2004. Combet F, Gelman L. Optimal filtering of gear signals for early damage detection based on the spectral kurtosis. Mech Syst Signal Process 2009; 23 (3) 652– 668. Otonnello C, Pagnan S. Modified frequency domain kurtosis for signal processing. Electron Lett 1994; 30(14): 1117– 1118. Cocconcelli M, Zimrov R, Rubini R, Bartelmus W. Kurtosis over energy distribution approach for STFT enhancement in ball bearing diagnosis. Condition Monitoring of Machinery in Non-Stationary Operations -Part 1; Berlin and Heidelberg: Springer; 2012. p 51– 59. Liu J, Ghafari S, Wang W, Golnaraghi F, Ismail F. Bearing fault diagnostics based on reconstructed features. IEEE Industry Applications Society Annual Meeting, IAS '08; Edmonton, Albeerta, Canada: 2008. p 1– 7. Millioz FE, Martin N. Circularity of the STFT and Spectral Kurtosis for time-frequency segmentation in Gaussian environment. IEEE Trans Signal Process 2011; 59(2): 515– 524. Rajan J, Poot D, Juntu J, Sijbers J. Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys Med Biol 2010; 55(22): 6973– 6975. Mardia KV. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970; 57: 519– 530. Mardia KV, Zemroch PJ. Measures of multivariate skewness and kurtosis. Appl Stat 1975; 24(2): 262– 265. Wang J, Serfling R. Nonparametric multivariate kurtosis and tailweight measures. J Nonparametr Stat 2005; 17: 441– 456. Castella M, Moreau E. A new method for kurtosis maximization and source separation. ICASSP; Dallas (TX); 2010. p 2670– 2673. Bowman KO, Shenton LR. Omnibus test contours for departures from normality based on b1 and b2. Biometrika 1975; 62: 243– 250. Pearson K. Contributions to the mathematical theory of evolution,-II. Skew variation in homogeneous material. Philos Trans R Soc Lond A 1895; 186: 343– 414. Abbasi, N. Asymptotic distribution of coefficients of skewness and kurtosis. J Math Stat Sci Publ 2009; 5(4): 365– 368. Asmussen S, Rydén T. A note on skewness in regenerative simulation. Commun Stat Simul Comput 2011; 40(1): 45– 57. Ignaccolo M, Michele CD. Skewness as a measure of instantaneous renormalized drop diameter distributions. Hydrol Earth Sci 2012; 16(2): 319– 327. Bhattacharyya RE, Kar S, Majumder DD. Fuzzy mean-variance-skewness portfolio selection models by interval analysis. Comput Math Appl 2011; 61(1): 126– 137. Kotz S, Seier E. Visualizing peak and tails to introduce kurtosis. Am Stat 2008; 62(4): 348– 354. Cheng PC-H, Pitt NG. Diagrams for difficult problems in probability. Math Gaz 2003; 87(508): 86– 97. de Montmort PR. Essay d'Analyse sur des Jeux de Hazard. Paris: Quillau; 1708. Hacking I. The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference. Cambridge: Cambridge University Press; 2006. Feller W. Introduction to Probability Theory and its Applications. New York: John Wiley and Sons; 1968. Port SC. Theoretical Probability for Applications. New York: John Wiley and Sons; 1994. Johnson NL, Kotz S. Urn Models and their Application. New York: John Wiley and Sons; 1977. Devore JL. Probability and Statistics for Engineering and the Sciences. 4th ed. Belmont (CA): Wadsworth; 1991. Hájek A. In: Edward NZ, editor. Interpretations of Probability. Winter 2012 ed. Stanford (CA): Stanford Encyclopedia of Philosophy; 2012. Ionut F, Tudor CA. Handbook of Probability. New York: John Wiley and Sons; 2013. Spiegel MR, Stephens LJ. Theory and Problems of Statistics. 3rd ed. New York: McGraw-Hill; 1999. Stroock D. Probability Theory. Cambridge: Cambridge University Press; 2011. Balakrishnan N, Nevzorov VB. A Primer on Statistical Distributions. New York: John Wiley and Sons; 2003. Evans M, Hastings N, Peacock B. Statistical Distributions. New York: John Wiley and Sons; 2000. Johnson NL, Kotz S, Kemp AW. Univariate Discrete Distributions. 2nd ed. New York: John Wiley and Sons; 1992. Hwang LC. A simple proof of the binomial theorem using differential calculus. Am Stat 2009; 63(1): 43– 44. Johnson NL. A note on the mean deviation of the binomial distribution. Biometrika 1957; 44: 532– 533. Kamat AR. A generalization of Johnson's property of the mean deviation for a class of distributions. Biometrika 1966; 53: 285– 287. Bernoulli J. The MacTutor History of Mathematics archive, School of Mathematics and Statistics, University_of_St_Andrews“University of St Andrews, UK; 1713. Pascal B. Varia opera Mathematica. Tolossae: D. Petri de Fermat; 1679. Chattamvelli R, Jones MC. Recurrence relations for the noncentral density, distribution functions and inverse moments. J Stat Comput Simul 1995; 52: 289– 299. De Moivre A. Approximatio ad summam terminorum binomii (a+b)n in seriem expansi” (self-published pamphlet); 1733. 7 p. Bertrand JF. Calculus des Probabilites. Paris: Gauthier-Villars; 1889. Diaconis P, Zabell S. Closed form summations for classical distributions: variations on a theme of De Moivre. Stat Sci 1991; 6: 284– 302. Peizer DB, Pratt JW. A normal approximation to binomial, F, beta and other common related tail probabilities. J Am Stat Assoc 1968; 63: 1417– 1456. Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions. Volume 1. New York: John Wiley and Sons; 1994. Zelterman D. Discrete Distributions—Applications in the Health Sciences. New York: John Wiley and Sons; 2005. van der Geest PAG. The binomial distribution with dependent Bernoulli trials. J Stat Comput Simul 2005; 75(2): 141– 154. Rice J. Mathematical Statistics and Data Analysis. Belmont (CA): Wadsworth; 2006. Ross SM. Probability Models for Computer Science. New York: Academic Press; 2002. Srivastava RC. Two characterizations of the geometric distribution. J Am Stat Assoc 1974; 69: 267– 269. Boland PJ. Statistical and Probabilistic Methods in Actuarial Sciences. Boca Raton, FL: Chapman & Hall/CRC; 2007. Meyer A. Calcul des Probabilités, publié sur les manuscrits de l'auteur par F. Folie. Mem. Soc. R. Sci. Liége. German translation by E. Czuber: Vorlesungen über Wahrscheinlichkeitsrechnung von Dr A. Meyer. Teubner, Leipzig, 1879. References are to the German edition, 1874; 2(4): 1–458. Guenther WC. A note on the relation between incomplete beta and negative binomial. Metron 1973; 31: 349– 351. Vellaisamy P, Upadhye NS. On the negative binomial distribution and its generalizations. Stat Probab Lett 2007; 77(2): 173– 180. Withers Ch, Nadarajah S. Maximum of continuous versions of Poisson and negative binomial type distributions. Teor Veroyatnost i Primenen 2010; 55(3): 598– 601. Bowman KO, Shenton LR. Skewness for maximum likelihood estimators of the negative binomial distribution. Far East J Theor Stat 2007; 22(1): 103– 129. Fisher RA. The mathematical distributions used in the common tests of significance. Econometrika 1931; 3(4): 353– 365. Anscombe FJ. The transformation of Poisson, binomial, and negative binomial data. Biometrika 1948; 35: 246– 254. Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat 1950; 21: 607– 611. Shanmugam R. Incidence rate restricted Poissonness. Sankhya (Series B) 1991; 53: 191– 201. Shanmugam R. Size biased incidence rate restricted Poissonness and its application in international terrorism. Appl Manage Sci 1993; 7: 41– 49. Shanmugam R. Poisson distribution. In: Salkind NJ, editor. Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage Press; 2006. p 772– 775. Shanmugam R. Spinned Poisson distribution with health management application. Healthc Manage Sci 2011; 14(4): 299– 306. Rodríguez-Avi J, Conde-Sánchez A, Sáez-Castillo AJ, Olmo-Jiménez MJ. A generalization of the beta-binomial distribution. J R Stat Soc Ser C Appl Stat 2007; 56(1): 51– 61. Le Gall F. Determination of the modes of a multinomial distribution. Stat Probab Lett 2003; 62(4): 325– 333. Frisch R. Solution of a problem of the calculus of probabilities. Scand Actuar J 1924; 7: 153– 174. Kamat AR. A property of the mean deviation for a class of continuous distributions. Biometrika 1965; 52: 288– 289. Winkler P. On computability of the mean deviation. Inf Process Lett 1982; 15: 36– 38. Babu GJ, Rao CR. Expansions for statistics involving the mean absolute deviation. Ann Inst Stat Math 1992; 44: 387– 403. Pham-Gia T, Turkkan N, Duong QP. Using the mean deviation to determine the prior distribution. Stat Probab Lett 1992; 13: 373– 381. Pham-Gia T, Hung TL. The mean and median absolute deviations. Math Comput Model 2001; 34(7): 921– 936. Egorychev GP, Zima EV, Hazewinkel M. Integral representation and algorithms for closed form summation. Handb Algebra 2008; 5: 459– 529. Kono H, Koshizuka T. Mean-absolute deviation model. IIE Trans 2005; 37: 893– 900. Liu Y, Zhang Z. Mean-absolute deviation optimization model for hedging portfolio selection problems. IEEE Comput Soc 2009; 3: 76– 79. Dong J. Mean deviation method for fuzzy multi-sensor object recognition, 2009. International Conference on Management of e-Commerce and e-Government. IEEE computer society; Nanchang, China; 2009. p 201– 204. Erel E, Ghosh JB. Minimizing weighted mean absolute deviation of job completion times from their weighted mean. Appl Math Comput 2011; 217: 9340– 9350. Jones MC, Balakrishnan N. How are moments and moments of spacings related to distribution functions? J Stat Plann Inference 2003; 103: 377– 390. Leemis LM, McQueston JT. Univariate distribution relationships. Am Stat 2008; 62: 45– 53. Gentle J, Hardle WK, Mori Y. Handbook of Computational Statistics Concepts and Methods. New York: Springer; 2012. Chattamvelli R. Power of the power-laws and an application to the PageRank metric. PMU J Comput Sci Eng 2010; 1(2): 1– 7. Abramowitz M, Stegun IA, editors. Handbook of Mathematical Functions. New York: Dover publications; 1973. Jambunathan MV. Some properties of beta and gamma distributions. Ann Math Stat 1954; 25: 401– 405. El-Saidi MA, Singh KP. Evaluating the cumulative distribution function and 100α percentage points of a family of generalized logistic distributions. Biom J 1991; 33: 865– 873. Olapade AK. On extended Type I generalized logistic distribution. IJMMS 57; 2003. p. 3069– 3074. Barreto-Souza W, Santos AHS, Cordeiro GM. The beta generalized exponential distribution. J Stat Comput Simul 2010; 80: 159– 172. Krysicki W. On some new properties of the beta distribution. Stat Prob Lett 1999; 42: 131– 137. Morgan EC, Lackner M, Vogel RM, Baise LG. Probability distributions for offshore wind speeds. Energy Convers Manage 2011; 52: 15– 26. Glaser RE. A characterization of Bartlett's statistic involving incomplete beta functions. Biometrika 1980; 67(1): 53– 58. Anderson TW. An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons; 1971. Seber GAF. Linear hypotheses and induced tests. Biometrika 1965; 51: 41– 47. Joshi PC, Lalitha S. Tests for two outliers in a linear model. Biometrika 1986; 73: 236– 239. Haight FA. On the effect of removing persons with N or more accidents from an accident prone population. Biometrika 1956; 52: 298– 300. Pearson K. On the applications of the double Bessel function Kτ1,τ2(x) to statistical problems. Biometrika 1933; 25: 158– 178. Wise ME. The incomplete beta function as a contour integral and a quickly converging series for its inverse. Biometrika 1950; 37: 208– 218. Tio GG, Guttman I. The inverted Dirichlet distribution with applications. J Am Stat Assoc 1965; 60: 793– 805. Benson D, Krishnamurthy K. Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient. Comput Stat Data Anal 2003; 43(2): 249– 267. Bock ME, Govindarajulu Z. A note on the noncentral chi-square distribution. Stat Probab Lett 1989; 7(2): 127– 129. Cohen JD. Noncentral chi-square: some observations on recurrence. Am Stat 1988; 42(2): 120– 122. Craig CC. Note on the distribution of noncentral t with an application. Ann Math Stat 1941; 17: 193– 194. Farebrother RW. Algorithm AS 231: the distribution of a noncentral χ2 variable with nonnegative degrees of freedom. Appl Stat 1987; 36: 402– 405. Lenth RV. Cumulative distribution function of the noncentral t distribution. Appl Stat 1988; 38(1): 185– 187. Ruben H. Noncentral chi-square and gamma revisited. Commun Stat 1974; 3(7): 607– 637. Tang PC. The power function of the analysis of variance tests with tables and illustrations of their use. Stat Res Mem 1938; 2: 126– 150. Ding CG, Bargmann RE. Sampling distribution of the square of the sample multiple correlation coefficient. Appl Stat 1991; 41: 478– 482. Ding CG. On the computation of the distribution of the square of the sample multiple correlation coefficient. Comput Stat Data Anal 1996; 22: 345– 350. Seber GAF. The noncentral chi-squared and beta distributions. Biometrika 1963; 50: 542– 544. Chattamvelli R. Another derivation of two algorithms for the noncentral χ2 and F distributions. J Stat Comput Simul 1995; 49: 207– 214. Norton V. A simple algorithm for noncentral F distribution. Appl Stat JRSS 1983; 32: 84– 85. Patnaik PB. The noncentral chi-square and F distributions and their applications. Biometrika 1949; 46: 202– 232. Ding CG, Bargmann RE. Quantiles of the distribution of the square of the sample multiple-correlation coefficient. Appl Stat 1991; 40: 199– 202. Gurland J. A relatively simple form of the distribution of the multiple correlation coefficient. J R Stat Soc Ser B 1968; 30(2): 276– 283. L'Ecuyer P, Simard R. Inverting the symmetrical beta distribution. Trans Math Softw (TOMS) 2006; 32(4): 509– 520. Saunders LR. An exact formula for the symmetrical incomplete beta function where the parameter is an integer or half-integer. Aust J Stat 1992; 34(2): 261– 264. Aroian LA. Continued fractions for the incomplete beta function. Ann Math Stat 1941; 12: 218– 223 (also 30, p. 1265). Özçag E, Ege I, Gürçay H. An extension of the incomplete beta function for negative integers. J Math Anal Appl 2008; 338(2): 984– 992. Thompson DH. Approximate formulae for the percentage points of the incomplete beta function and the χ2 distribution. Biometrika 1974; 34: 368– 372. Soper HE. The Numerical Evaluation of the Incomplete Beta Function, Tracts for Computers. Cambridge: Cambridge University" @default.
- W4211159125 created "2022-02-13" @default.
- W4211159125 date "2015-07-31" @default.
- W4211159125 modified "2023-09-23" @default.
- W4211159125 title "References" @default.
- W4211159125 cites W1492451549 @default.
- W4211159125 cites W1498017815 @default.
- W4211159125 cites W1540186129 @default.
- W4211159125 cites W1551098300 @default.
- W4211159125 cites W1581903297 @default.
- W4211159125 cites W1965547520 @default.
- W4211159125 cites W1965612527 @default.
- W4211159125 cites W1966105707 @default.
- W4211159125 cites W1970094137 @default.
- W4211159125 cites W1970424920 @default.
- W4211159125 cites W1971974766 @default.
- W4211159125 cites W1972521116 @default.
- W4211159125 cites W1974171141 @default.
- W4211159125 cites W1976908574 @default.
- W4211159125 cites W1978042554 @default.
- W4211159125 cites W1979593580 @default.
- W4211159125 cites W1980088491 @default.
- W4211159125 cites W1980311208 @default.
- W4211159125 cites W1980534953 @default.
- W4211159125 cites W1981667871 @default.
- W4211159125 cites W1981910084 @default.
- W4211159125 cites W1982358538 @default.
- W4211159125 cites W1982506807 @default.
- W4211159125 cites W1983540233 @default.
- W4211159125 cites W1988636429 @default.
- W4211159125 cites W1989243075 @default.
- W4211159125 cites W1989599332 @default.
- W4211159125 cites W1990040225 @default.
- W4211159125 cites W1990403306 @default.
- W4211159125 cites W1990576050 @default.
- W4211159125 cites W1991082967 @default.
- W4211159125 cites W1991515992 @default.
- W4211159125 cites W1995606751 @default.
- W4211159125 cites W1995716846 @default.
- W4211159125 cites W1997003382 @default.
- W4211159125 cites W1999553334 @default.
- W4211159125 cites W2000031724 @default.
- W4211159125 cites W2001374883 @default.
- W4211159125 cites W2002822717 @default.
- W4211159125 cites W2003066751 @default.
- W4211159125 cites W2006827020 @default.
- W4211159125 cites W2007022163 @default.
- W4211159125 cites W2009697654 @default.
- W4211159125 cites W2011915669 @default.
- W4211159125 cites W2012542273 @default.
- W4211159125 cites W2013781369 @default.
- W4211159125 cites W2014922687 @default.
- W4211159125 cites W2017586306 @default.
- W4211159125 cites W2021262032 @default.
- W4211159125 cites W2021447134 @default.
- W4211159125 cites W2023387260 @default.
- W4211159125 cites W2023699509 @default.
- W4211159125 cites W2024556168 @default.
- W4211159125 cites W2025212701 @default.
- W4211159125 cites W2029297843 @default.
- W4211159125 cites W2030797447 @default.
- W4211159125 cites W2031018323 @default.
- W4211159125 cites W2034661498 @default.
- W4211159125 cites W2034672148 @default.
- W4211159125 cites W2037499216 @default.
- W4211159125 cites W2038568847 @default.
- W4211159125 cites W2041696298 @default.
- W4211159125 cites W2042255131 @default.
- W4211159125 cites W2042825572 @default.
- W4211159125 cites W2043157501 @default.
- W4211159125 cites W2044457292 @default.
- W4211159125 cites W2045872032 @default.
- W4211159125 cites W2050688758 @default.
- W4211159125 cites W2051741062 @default.
- W4211159125 cites W2051855111 @default.
- W4211159125 cites W2054802336 @default.
- W4211159125 cites W2057372385 @default.
- W4211159125 cites W2057462391 @default.
- W4211159125 cites W2057720927 @default.
- W4211159125 cites W2058493957 @default.
- W4211159125 cites W2059083031 @default.
- W4211159125 cites W2059313166 @default.
- W4211159125 cites W2059333978 @default.
- W4211159125 cites W2059382051 @default.
- W4211159125 cites W2059584073 @default.
- W4211159125 cites W2059648574 @default.
- W4211159125 cites W2062996902 @default.
- W4211159125 cites W2063558080 @default.
- W4211159125 cites W2063946805 @default.
- W4211159125 cites W2065375802 @default.
- W4211159125 cites W2065534601 @default.
- W4211159125 cites W2067789348 @default.
- W4211159125 cites W2067942812 @default.
- W4211159125 cites W2072819688 @default.
- W4211159125 cites W2075197616 @default.
- W4211159125 cites W2075996971 @default.
- W4211159125 cites W2078924576 @default.
- W4211159125 cites W2079615115 @default.