Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211163796> ?p ?o ?g. }
- W4211163796 endingPage "341" @default.
- W4211163796 startingPage "335" @default.
- W4211163796 abstract "Free Access References Douglas M. Bates, Douglas M. Bates Department of Statistics, University of Wisconsin, Madison, WisconsinSearch for more papers by this authorDonald G. Watts, Donald G. Watts Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, CanadaSearch for more papers by this author Book Author(s):Douglas M. Bates, Douglas M. Bates Department of Statistics, University of Wisconsin, Madison, WisconsinSearch for more papers by this authorDonald G. Watts, Donald G. Watts Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, CanadaSearch for more papers by this author First published: 26 August 1988 https://doi.org/10.1002/9780470316757.refsBook Series:Wiley Series in Probability and Statistics AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abdollah, Shirin, (1986), The Effect of Doxorubicin on the Specific Binding of [3H] Nitrendipine to Rat Heart Microsomes. Master's Thesis, Queen's University at Kingston. Google Scholar Anderson, David H., (1983), Compartmental Modeling and Tracer Kinetics. Springer Verlag. CrossrefGoogle Scholar Ansley, Craig F., (1985), “Quick proofs of some regression theorems via the QR algorithm.” American Statistician, 39 (1), 55– 59. Web of Science®Google Scholar Armstrong, P. W., D. G., Watts, D. C. Hamilton, M. A. Chiong, and J. O. Parker, (1979), “Quantification of myocardial infarction: Template model for serial creatine kinase analysis.” Circulation, 60 (4, 856– 865. CrossrefCASPubMedWeb of Science®Google Scholar Bache, C. A., J. W., Serum, W. D. Youngs, and D. J. Lisk, (1972), “Polychlorinated biphenyl residues: Accumulation in Cayuga Lake trout with age.” Science, 117, 1192– 1193. Google Scholar Bacon, D. W., and D. G. Watts, (1971), “Estimating the transition between two intersecting straight lines.” Biometrika, 58, 525– 534. CrossrefWeb of Science®Google Scholar Bard, Y., (1974), Nonlinear Parameter Estimation. New York: Academic Press. Google Scholar Bartels, R. H., and G. W. Stewart, (1972), “Algorithm 432, the solution of the matrix equation AX-XB=C.” Communications of the Association for Computing Machinery, 15 (9), 820– 826. CrossrefWeb of Science®Google Scholar Bates, Douglas M., (1978), Curvature Measures of Nonlinearity. Ph.D. Thesis, Queen's University at Kingston. Google Scholar Bates, D. M., D. C., Hamilton, and D. G. Watts, (1983), “Calculation of intrinsic and parameter-effects curvatures for nonlinear regression models.” Communications in Statistics-Simulation and Computation, 12, 469– 477. CrossrefWeb of Science®Google Scholar Bates, Douglas M., and Mary J. Lindstrom, (1986), “ Nonlinear least squares with conditionally linear parameters”, in Proceedings of the Statistical Computing Section. New York: American Statistical Association. Google Scholar Bates, D. M., and D. G. Watts, (1980), “Relative curvature measures of nonlinearity (with discussion).” Journal of the Royal Statistical Society, Ser. B, 42 (1), 1– 25. Wiley Online LibraryWeb of Science®Google Scholar Bates, D. M., and D. G. Watts, (1981a), “Parameter transformations for improved approximate confidence regions in nonlinear least squares.” Annals of Statistics, 9 (6), 1152– 1167. CrossrefWeb of Science®Google Scholar Bates, D. M., and D. G. Watts, (1981b), “A relative offset orthogonality convergence criterion for nonlinear least squares.” Technometrics, 23 (2), 179– 183. Web of Science®Google Scholar Bates, D. M., and D. G. Watts, (1984), “A multi-response Gauss-Newton algorithm.” Communications in Statistics-Simulation and Computation, 13 (5), 705– 715. CrossrefWeb of Science®Google Scholar Bates, Douglas M., and Donald G. Watts, (1985), “Multiresponse estimation with special application to systems of linear differential equations (with discussion).” Technometrics, 27 (4), 329– 360. CrossrefWeb of Science®Google Scholar Bates, Douglas M., and Donald G. Watts, (1987), “A generalized Gauss-Newton procedure for multi-response parameter estimation.” SIAM Journal of Scientific and Statistical Computing, 7 (1), 49– 55. CrossrefGoogle Scholar Bates, Douglas M., Dennis A. Wolf, and Donald G. Watts, (1985), “ Nonlinear least squares and first-order kinetics”, in David Allen, Ed., Proceedings of Computer Science and Statistics: Seventeenth Symposium on the Interface. New York: North-Holland. Google Scholar Bavely, Connice A., and G. W. Stewart, (1979), “An algorithm for computing reducing subspaces by block diagonalization.” SIAM Journal of Numerical Analysis, 16 (2), 359– 367. CrossrefWeb of Science®Google Scholar Beale, E. M. L., (1960), “Confidence regions in nonlinear estimation (with discussion).” Journal of the Royal Statistical Society, Ser. B, 22, 41– 88. Wiley Online LibraryWeb of Science®Google Scholar Becker, Richard A., John M. Chambers, and Allan R. Wilks, (1988), The New S Language: A Programming Environment For Data Analysis and Graphics. Belmont, Calif.: Wadsworth. Google Scholar Belsley, D. A., E., Kuh, and R. E. Welsch, (1980), Regression Diagnostics-Identifying Influential Data and Sources of Variation. New York: Wiley. Wiley Online LibraryGoogle Scholar Bliss, C. I., and A. T. James, (1966), “Fitting the rectangular hyperbola.” Biometrics, 22, 573– 602. CrossrefCASPubMedWeb of Science®Google Scholar Box, G. E. P., (1960), “Fitting empirical data.” Annals of the New York Academy of Sciences, 86, 792– 816. Wiley Online LibraryWeb of Science®Google Scholar Box, G. E. P., and G. A. Coutie, (1956), “Applications of digital computers in the exploration of functional relationships.” Proceedings of the IEEE, 103B (Supplement no. 1), 100– 107. Google Scholar Box, George E. P., and David R. Cox, (1964), “An analysis of transformations.” Journal of the Royal Statistical Society, Ser. B, 26, 211– 252. Wiley Online LibraryPubMedGoogle Scholar Box, G. E. P., and N. R. Draper, (1959), “A basis for the selection of a response surface design.” Journal of the American Statistical Association, 54, 622– 653. CrossrefWeb of Science®Google Scholar Box, G. E. P., and N. R. Draper, (1965), “The Bayesian estimation of common parameters from several responses.” Biometrika, 52, 355– 365. CrossrefWeb of Science®Google Scholar Box, George E. P., and Norman R. Draper, (1987), Empirical Model-Building and Response Surfaces. New York: Wiley. Google Scholar Box, G. E. P., and W. J. Hill, (1974), “Correcting inhomogeneity of variance with power transformation weighting.” Technometrics, 16, 385– 389. Web of Science®Google Scholar Box, G. E. P., and W. G. Hunter, (1965), “ Sequential design of experiments for nonlinear models” in IBM Scientific Computer Symposium in Statistics, pp. 113– 137. Google Scholar Box, G. E. P., W. G., Hunter, and J. S. Hunter, (1978), Statistics for Experimenters. New York: Wiley. CASPubMedWeb of Science®Google Scholar Box, G. E. P., W. G., Hunter, J. F. MacGregor, and J. Erjavec, (1973), “Some problems associated with the analysis of multiresponse models.” Technometrics, 15 (1), 33– 51. Web of Science®Google Scholar Box, George E. P., and Gwilym M. Jenkins, (1976), Time Series Analysis: Forecasting and Control (revised edition). San Francisco: Holden-Day. Google Scholar Box, George E. P., and Hiromitsu Kanemasu, (1984), “ Constrained nonlinear least squares”, in Klaus Hinkelmann, Ed., Contributions to Experimental Design, Linear Models, and Genetic Statistics: Essays in Honor of Oscar Kempthorne. New York: Marcel Dekker. Google Scholar Box, G. E. P., and H. L. Lucas, (1959), “Design of experiments in non-linear situations.” Biometrika, 46, 77– 90. CrossrefWeb of Science®Google Scholar Box, G. E. P., and G. C. Tiao, (1973), Bayesian Inference in Statistical Analysis. Reading, Mass.: Addison-Wesley. Google Scholar Box, George E. P., and Paul W. Tidwell, (1962), “Transformations of the independent variables.” Technometrics, 4, 531– 550. Web of Science®Google Scholar Box, M. J., (1968), “The occurence of replications in optimal designs of experiments to estimate parameters in nonlinear models.” Journal of the Royal Statistical Society, Ser. B, 30, 290– 302. Wiley Online LibraryWeb of Science®Google Scholar Box, M. J., (1971), “An experimental design criterion for precise parameter estimation of a subset of the parameters in a nonlinear model.” Biometrika, 58, 149– 153. Web of Science®Google Scholar Box, M. J., N. R., Draper, and W. G. Hunter, (1970), “Missing values in multi-response nonlinear data fitting.” Technometrics, 12, 613– 620. Web of Science®Google Scholar Caracotsios, M., and W. E. Stewart, (1985), “Sensitivity analysis of initial value problems with mixed ODE's and algebraic equations.” Computers and Chemical Engineering, 9 (4), 359– 365. CrossrefCASWeb of Science®Google Scholar Carr, N. L., (1960), “Kinetics of catalytic isomerization of n-pentane.” Industrial and Engineering Chemistry, 52, 391– 396. CrossrefCASWeb of Science®Google Scholar Carroll, Raymond J., and David Ruppert, (1984), “Power transformation when fitting theoretical models to data.” Journal of the American Statistical Association, 79 (386), 321– 328. Web of Science®Google Scholar Chambers, J. M., (1977), Computational Methods for Data Analysis. New York: Wiley. Google Scholar Chambers, John M., William S. Cleveland, Beat Kleiner, and Paul A. Tukey, (1983), Graphical Methods for Data Analysis. Belmont, Calif.: Wadsworth. Google Scholar Cleveland, William S., (1984), “Graphs in scientific publications.” American Statistician, 38 (4), 261– 269. Web of Science®Google Scholar Cleveland, William S., (1985), Elements of Graphing Data. Belmont, Calif.: Wadsworth. Google Scholar Cochran, W. G., (1973), “Experiments for nonlinear functions.” Journal of the American Statistical Association, 68, 771– 778. CrossrefWeb of Science®Google Scholar Cochran, W. G., and G. M. Cox, (1957), Experimental Designs. New York: Wiley. Google Scholar Cole, K. S., and R. H. Cole, (1941), “Dispersion and absorption in dielectrics I: Alternating current characteristics.” Journal of Physical Chemistry, 9, 341– 351. CrossrefCASWeb of Science®Google Scholar Conte, Samuel D., and Carl de Boor, (1980), Elementary Numerical Analysis, an Algorithmic Approach ( third edition). New York: McGraw-Hill. Google Scholar Cook, R. D., and S. Weisberg, (1982), Residuals and Influence in Regression. London: Chapman and Hall. CrossrefCASWeb of Science®Google Scholar Cook, R. D., and S. Weisberg, (1983), “Diagnostics for heteroscedasticity in regression.” Biometrika, 70 (1), 1– 10. CrossrefWeb of Science®Google Scholar Daniel, C., and F. S. Wood, (1980), Fitting Equations to Data ( second edition). New York: Wiley. Google Scholar O. L. Davies, Ed. (1956), The Design and Analysis of Industrial Experiments ( second edition). Edinburgh: Oliver and Boyd. Google Scholar Dennis, Jr., J. E., D. M. Gay, and R. E. Welsch, (1981), “An adaptive nonlinear leastsquares algorithm.” ACM Transactions on Mathematical Software, 7, 348– 368. CrossrefWeb of Science®Google Scholar Dennis, Jr., J. E., and Robert B. Schnabel, (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, N. J.: Prentice Hall. Google Scholar Dierburg, F., and K. C. Ewel, (1982), “ The effects of treated sewage effluent on decomposition and organic matter accumulation in cypress domes”, in K. C. Ewel and H. T. Odum, Eds., Cypress Domes. Florida University Press. Google Scholar Dongarra, J. J., J. R., Bunch, C. B. Moler, and G. W. Stewart, (1979), Linpack Users' Guide. Philadelphia: SIAM. CrossrefWeb of Science®Google Scholar Draper, N. R., and H. Smith, (1981), Applied Regression Analysis ( second edition). New York: Wiley. Google Scholar Edlefsen, Lee E., and Samuel D. Jones, (1986), GAUSSTM Programming Language Manual. Kent, Wash.: Aptech Systems Inc. Google Scholar Ehrenberg, A. S. C., (1981), “The problem of numeracy.” American Statistician, 35 (2), 67– 71. CrossrefWeb of Science®Google Scholar Ehrenberg, A. S. C., (1982), “Writing technical reports or papers.” American Statistician, 36 (4), 326– 329. Web of Science®Google Scholar Elliot, J. R., and D. R. Pierson, (1986), Private communication. Google Scholar Fedorov, V. V., (1972), Theory of Optimal Experiments. New York: Academic Press. (Translated by W. J. Studden and E. M. Klimko.) Google Scholar Fisher, R. A., (1935), Design of Experiments. London: Oliver and Boyd. Google Scholar Froment, Gilbert F., and Kenneth B. Bischoff, (1979), Chemical Reactor Analysis and Design. New York: Wiley. Google Scholar Fuguitt, R. E., and J. E. Hawkins, (1945), “The liquid-phase thermal isomerization of α-pinene.” Journal of the American Chemical Society, 67, 242– 245. CrossrefCASWeb of Science®Google Scholar Fuguitt, R. E., and J. E. Hawkins, (1947), “Rate of the thermal isomerization of α-pinene in the liquid phase.” Journal of the American Chemical Society, 69, 319– 322. CrossrefCASWeb of Science®Google Scholar Gill, P. E., W., Murray, and M. H. Wright, (1981), Practical Optimization. New York: Academic Press. Google Scholar Godfrey, Keith, (1983), Compartmental Models and Their Application. New York: Academic Press. Google Scholar Golub, G. H., and V. Pereyra, (1973), “The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate.” Journal of SIAM, 10, 413– 432. Web of Science®Google Scholar Gregory, F. G., (1956), “ General aspects of leaf growth”, in F. L. Milthorpe, Ed., The Growth of Leaves. London: Butterworth. Google Scholar Halperin, M., (1963), “Confidence interval estimation in nonlinear regression.” Journal of the Royal Statistical Society, Ser. B, 25, 330– 333. Wiley Online LibraryWeb of Science®Google Scholar Hamilton, D. C., (1980), Experimental Design for Nonlinear Regression Models. Ph.D. Thesis, Queen's University at Kingston. Google Scholar Hamilton, D. C., (1986), “Confidence regions for parameter subsets in nonlinear regression.” Biometrika, 73 (1), 57– 64. CrossrefWeb of Science®Google Scholar Hamilton, David C., and Donald G. Watts, (1985), “A quadratic design criterion for precise estimation in nonlinear regression models.” Technometrics, 27 (3), 241– 250. CrossrefWeb of Science®Google Scholar Hamilton, D. C., D. G., Watts, and D. M. Bates, (1982), “Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions.” Annals of Statistics, 10 (2), 386– 393. CrossrefWeb of Science®Google Scholar Hartley, H. O., (1961), “The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares.” Technometrics, 3, 269– 280. Web of Science®Google Scholar Havriliak, Stephen Jr., and S., Negami, (1967), “A complex plane representation of dielectric and mechanical relaxation processes in some polymers.” Polymer, 8, 161– 205. CrossrefCASWeb of Science®Google Scholar Havriliak, Stephen Jr., and Donald G. Watts, (1987), “ Estimating dielectric constants: A complex multiresponse problem”, in C. Mallows, Ed., Data, Design, and Analysis. New York: Wiley. Web of Science®Google Scholar Heyes, J. K., and R. Brown, (1956), “ Growth and cellular differentiation”, in F. L. Milthorpe, Ed., The Growth of Leaves. London: Butterworth. Google Scholar Hill, P. D. H., (1980), “D-optimal designs for partially nonlinear regression models.” Technometrics, 22 (2), 275– 276. Web of Science®Google Scholar Hill, W. J., and W. G. Hunter, (1974), “Design of experiments for subsets of the parameters.” Technometrics, 16, 425– 434. CrossrefWeb of Science®Google Scholar Hill, W. J., W. G., Hunter, and D. W. Wichem, (1968), “A joint design criterion for the dual problem of model discrimination and parameter estimation.” Technometrics, 10, 145– 160. CrossrefWeb of Science®Google Scholar Himmelblau, D. M., (1972), “ A uniform evaluation of unconstrained optimization techniques”, in F. A. Lootsma, Ed., Numerical Methods for Nonlinear Optimization. London: Academic Press. Google Scholar Hinkley, D. V., (1969), “Inference about the intersection in two-phase regression.” Biometrika, 56, 495– 504. CrossrefWeb of Science®Google Scholar Hocking, R. R., (1983), “Developments in linear regression methodology: 1959–1982 (with discussion).” Technometrics, 25 (3), 219– 249. CrossrefWeb of Science®Google Scholar Hougen, O. A., and K. M. Watson, (1947), Chemical Reaction Principles. New York: Wiley. Google Scholar Householder, A. S., (1958), “Unitary triangularization of a nonsymmetric matrix.” Journal of the Association for Computing Machinery, 5, 339– 342. CrossrefWeb of Science®Google Scholar Hubbard, A. B., and W. E. Robinson, (1950), “ A thermal decomposition study of Colorado oil shale.” U.S. Bureau of Mines, Rept. Invest. No. 4744. Google Scholar Huber, P. J., (1981), Robust Statistics. New York: Wiley. Wiley Online LibraryPubMedGoogle Scholar Jennrich, R. I., and P. B. Bright, (1976), “Fitting systems of linear differential equations using computer generated exact derivatives (with discussion).” Technometrics, 18 (4), 385– 399. Web of Science®Google Scholar Jennrich, R. I., and P. F. Sampson, (1968), “An application of stepwise regression to nonlinear estimation.” Technometrics, 10 (1), 63– 72. CrossrefWeb of Science®Google Scholar Joiner, B. L., (1981), “Lurking variables: Some examples.” American Statistician, 35, 227– 233. CrossrefWeb of Science®Google Scholar Jupp, David L. B., (1978), “Approximation to data by splines with free knots.” SIAM Journal of Numerical Analysis, 15 (2), 328– 343. CrossrefWeb of Science®Google Scholar Juusola, J. A., (1971), A Kinetic Mechanism for the Vapor-phase Oxidation of o-Xylene over a Vanadium Oxide Catalyst. Ph. D. thesis, Queen's University at Kingston. Google Scholar Kaplan, Stanley A., Robert E. Weinfeld, Charles W. Abruzzo, and Margaret Lewis, (1972), “Pharmacokinetic profile of sulfisoxazole following intravenous, intramuscular, and oral administration to man.” Journal of Pharmaceutical Sciences, 61, 773– 778. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kaufman, Linda, (1975), “A variable projection method for solving separable nonlinear least squares problems.” BIT, 15, 49– 57. CrossrefGoogle Scholar Kennedy, Jr., W. J., and J. E. Gentle, (1980), Statistical Computing. New York: Marcel Dekker. Google Scholar Khuri, A. I., (1984), “A note on D-optimal designs for partially nonlinear regression models.” Technometrics, 26 (1), 59– 61. Web of Science®Google Scholar Lawton, W. H., E. A., Sylvestre, and M. S. Maggio, (1972), “Self modeling nonlinear regression.” Technometrics, 14 (3), 513– 532. CrossrefWeb of Science®Google Scholar Levenberg, K., (1944), “A method for the solution of certain nonlinear problems in least squares.” Quarterly of Applied Mathematics, 2, 164– 168. CrossrefGoogle Scholar Linssen, H. N., (1975), “Nonlinearity measures: a case study.” Statistica Neerlandica, 29, 93– 99. Wiley Online LibraryGoogle Scholar Lythgoe, Steven C., (1986), A model for the Thermal Dissolver of the Wilsonville Direct Coal Liquefaction Process. Master's Thesis, Queen's University at Kingston. Google Scholar Marquardt, D. W., (1963), “An algorithm for the estimation of non-linear parameters.” Journal of SIAM, 11, 431– 441. CrossrefCASWeb of Science®Google Scholar Marske, Donald, (1967), Biochemical Oxygen Demand Data Interpretation Using Sum of Squares Surface. M.S. Thesis, University of Wisconsin-Madison. Google Scholar McLean, D. D., D. J., Pritchard, D. W. Bacon, and J. Downie, (1979), “Singularities in multiresponse modelling.” Technometrics, 21 (3), 291– 298. CrossrefWeb of Science®Google Scholar Michaelis, L., and M. L. Menten, (1913), “Kinetik der Invertinwirkung.” Biochemische Zeitschrift, 49, 333. CASWeb of Science®Google Scholar Miller, Allan, (1983), “ BMD P3R-A warning.” CSIRO-DMS Newsletter, Sydney, Australia: CSIRO. Google Scholar Moler, Cleve, and Charles Van Loan, (1978), “Nineteen dubious ways to compute the exponential of a matrix.” SIAM Review, 20 (4), 801– 836. CrossrefWeb of Science®Google Scholar Montgomery, Douglas C., and Elizabeth A. Peck, (1982), Introduction to Linear Regression Analysis. New York: Wiley. Wiley Online LibraryWeb of Science®Google Scholar O'Neill, Barrett, (1966), Elementary Differential Geometry. New York: Academic Press. Google Scholar Osborne, M. R., (1971), “ Some aspects of non-linear least squares calculations”, in F. A. Lootsma, Ed., Numerical Methods for Non-linear Optimization. New York: Academic Press. Google Scholar Pimentel-Gomes, F., (1953), “The use of Mitscherlich's regression law in the analysis of experiments with fertilizers.” Biometrics, 9, 498– 516. CrossrefWeb of Science®Google Scholar Pritchard, Douglas, (1972), Statistical Design and Analysis Using Experimental Kinetic Data. Master's Thesis, Queen's University. Google Scholar Ralston, M. L., and R. I. Jennrich, (1978), “Dud, a derivative-free algorithm for nonlinear least squares.” Technometrics, 20, 7– 14. CrossrefWeb of Science®Google Scholar Ratkowsky, David A., (1979), “ Choosing the ‘best’ parameterization of the asymptotic regression model.” Technical Report, CSIRO Division of Mathematics and Statistics, Tasmania. Google Scholar Ratkowsky, D. A., (1983), Nonlinear Regression Modelling: A Unified Practical Approach. New York: Marcel Dekker. Google Scholar Ratkowsky, D. A., (1985), “A statistically suitable general formulation for modelling catalytic chemical reactions.” Chemical Engineering Science, 40 (9), 1623– 1628. CrossrefCASWeb of Science®Google Scholar Renwick, A. G., (1982), “ Pharmacokinetics in toxicology”, in A. Wallace Hayes, Ed., Principles and Methods of Toxicology. New York: Raven Press, pp. 659– 710. Google Scholar Roller, Duane, (1950), The Early Development of the Concepts of Temperature and Heat: The Rise and Decline of the Caloric Theory. Cambridge, Mass.: Harvard University Press. Google Scholar SAS Institute Inc. (1985), SAS User's Guide: Statistics, Version 5 Edition. Cary, N.C.: SAS Institute Inc. Google Scholar SAS Institute Inc. (1985), SAS/IMLT User's Guide, Version 5 Edition. Cary, N.C.: SAS Institute Inc. Google Scholar Seber, G. A., (1977), Linear Regression Analysis. New York: Wiley. Google Scholar Silvey, S. D, and D. M., Titterington, (1973), “A geometric approach to optimal design theory.” Biometrika, 60, 21– 32. CrossrefWeb of Science®Google Scholar Smith, B. T., J. M., Boyle, J. J. Dongarra, B. S. Garbow, Y. Dcebe, V. C. Klema, and C. B. Moler, (1976), Matrix Eigensystem Routines-EISPACK Guide. Springer Verlag. CrossrefGoogle Scholar Sredni, J., (1970), Problems of Design, Estimation, and Lack of Fit in Model Building. Ph.D. Thesis, University of Wisconsin-Madison. Google Scholar St. John, R. C., and N. R. Draper, (1975), “D-optimality for regression designs: a review.” Technometrics, 17, 15– 23. Web of Science®Google Scholar Steinberg, David M., and William G. Hunter, (1984), “Experimental design: review and comment (with discussion).” Technometrics, 26 (2), 71– 130. CrossrefWeb of Science®Google Scholar Stewart, G. W., (1973), Introduction to Matrix Computations. New York: Academic Press. Google Scholar Stewart, G. W., (1976), “HOR3 and EXCHNG: Fortran subroutines for calculating the eigenvalues of a real upper Hessenberg matrix.” ACM Transactions on Mathematical Software, 2 (3), 275– 280. (Algorithm 506.) CrossrefGoogle Scholar Stewart, W. E., and J. P. Sorensen, (1981), “Bayesian estimation of common parameters from multiresponse data with missing observations.” Technometrics, 23, 131– 141. Web of Science®Google Scholar Tierney, Luke, and Joseph B. Kadane, (1986), “Accurate approximations for posterior moments and densities.” Journal of the American Statistical Association, 81 (393), 82– 86. CrossrefWeb of Science®Google Scholar Treloar, M. A., (1974), Effects of Puromycin on Galactosyltransferase of Golgi Membranes. Master's Thesis, University of Toronto. Google Scholar Tufte, Edward R., (1983), The Visual Display of Quantitative Information. Cheshire, Conn.: Graphics Press. CASPubMedGoogle Scholar Varah, J. M., (1982), “A spline least squares method for numerical parameter estimation in differential equations.” SIAM Journal of Scientific and Statistical Computing, 3 (1), 28– 46. CrossrefWeb of Science®Google Scholar Wagner, J. G., (1967), “Use of computers in pharmacokinetics.” Clinical Pharmacology and Therapeutics, 8, 201. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Wagner, John G., (1975), Fundamentals of Clincal Pharmacokinetics. Hamilton, Illinois: Drug Intelligence Publications. Google Scholar Wald, A., (1943), “On the efficient design of statistical investigations.” Annals of Mathematical Statistics, 14, 134– 140. CrossrefGoogle Scholar Watts, Donald G., (1981), “A task-analysis approach to designing a regression analysis course.” American Statistician, 35 (2), 77– 84. Web of Science®Google Scholar Watts, D. G., and D. W. Bacon, (1974), “Using a hyperbola as a transition model to fit two-regimen straight-line data.” Technometrics, 16, 369– 373. Web of Science®Google Scholar Watts, Donald G., Donald deBethizy, and Robert G. Stiratelli, (1986), “ Toxicity of Ethyl Acrylate.” Technical Report, Rohm and Haas Co., Spring House, Pa. Google Scholar Williams, E. J., (1962), “Exact fiducial limits in nonlinear estimation.” Journal of the Royal Statistical Society, Ser. B, 24, 125– 139. Wiley Online LibraryGoogle Scholar Ziegel, E. R., and J. W. Gorman, (1980), “Kinetic modelling with multiresponse data.” Technometrics, 22 (2), 139– 151. CrossrefWeb of Science®Google Scholar Ziegel, Eric R., (1985), “Discussion of the paper by Bates and Watts.” Technometrics, 27 (4), 352– 357. CrossrefWeb of Science®Google Scholar Nonlinear Regression Analysis and Its Applications ReferencesRelatedInformation" @default.
- W4211163796 created "2022-02-13" @default.
- W4211163796 date "1988-08-26" @default.
- W4211163796 modified "2023-10-12" @default.
- W4211163796 title "References" @default.
- W4211163796 cites W133977063 @default.
- W4211163796 cites W138399493 @default.
- W4211163796 cites W1503543307 @default.
- W4211163796 cites W1570472658 @default.
- W4211163796 cites W1602314374 @default.
- W4211163796 cites W1965384227 @default.
- W4211163796 cites W1966523582 @default.
- W4211163796 cites W1967049326 @default.
- W4211163796 cites W1967917628 @default.
- W4211163796 cites W1968081146 @default.
- W4211163796 cites W1969560530 @default.
- W4211163796 cites W1979182031 @default.
- W4211163796 cites W1979204363 @default.
- W4211163796 cites W1983214343 @default.
- W4211163796 cites W1987564911 @default.
- W4211163796 cites W1987617600 @default.
- W4211163796 cites W1989165145 @default.
- W4211163796 cites W1995793061 @default.
- W4211163796 cites W2003332152 @default.
- W4211163796 cites W2004367776 @default.
- W4211163796 cites W2009074549 @default.
- W4211163796 cites W2017567520 @default.
- W4211163796 cites W2017696952 @default.
- W4211163796 cites W2022694867 @default.
- W4211163796 cites W2026039351 @default.
- W4211163796 cites W2030025973 @default.
- W4211163796 cites W2030434387 @default.
- W4211163796 cites W2032514760 @default.
- W4211163796 cites W2034622189 @default.
- W4211163796 cites W2037620736 @default.
- W4211163796 cites W2040493578 @default.
- W4211163796 cites W2046915036 @default.
- W4211163796 cites W2051866702 @default.
- W4211163796 cites W2053020350 @default.
- W4211163796 cites W2061581846 @default.
- W4211163796 cites W2066612746 @default.
- W4211163796 cites W2067000587 @default.
- W4211163796 cites W2067136705 @default.
- W4211163796 cites W2067596735 @default.
- W4211163796 cites W2068967648 @default.
- W4211163796 cites W2069092055 @default.
- W4211163796 cites W2070679100 @default.
- W4211163796 cites W2071377852 @default.
- W4211163796 cites W2085742009 @default.
- W4211163796 cites W2087070363 @default.
- W4211163796 cites W2088654232 @default.
- W4211163796 cites W2088748973 @default.
- W4211163796 cites W2092590148 @default.
- W4211163796 cites W2093636642 @default.
- W4211163796 cites W2094714767 @default.
- W4211163796 cites W2094879057 @default.
- W4211163796 cites W2103368439 @default.
- W4211163796 cites W2104772878 @default.
- W4211163796 cites W2119628114 @default.
- W4211163796 cites W2133658233 @default.
- W4211163796 cites W2141940710 @default.
- W4211163796 cites W2144496644 @default.
- W4211163796 cites W2162046864 @default.
- W4211163796 cites W2256578114 @default.
- W4211163796 cites W2314060300 @default.
- W4211163796 cites W2315113622 @default.
- W4211163796 cites W2322621612 @default.
- W4211163796 cites W2322784389 @default.
- W4211163796 cites W2324516244 @default.
- W4211163796 cites W2420898473 @default.
- W4211163796 cites W2489822048 @default.
- W4211163796 cites W2739833408 @default.
- W4211163796 cites W4206495155 @default.
- W4211163796 cites W4230629072 @default.
- W4211163796 cites W4241918848 @default.
- W4211163796 cites W4246064735 @default.
- W4211163796 cites W4255748234 @default.
- W4211163796 cites W4300934284 @default.
- W4211163796 cites W4301509565 @default.
- W4211163796 cites W4362219304 @default.
- W4211163796 doi "https://doi.org/10.1002/9780470316757.refs" @default.
- W4211163796 hasPublicationYear "1988" @default.
- W4211163796 type Work @default.
- W4211163796 citedByCount "0" @default.
- W4211163796 crossrefType "other" @default.
- W4211163796 hasBestOaLocation W42111637961 @default.
- W4211163796 hasConcept C41008148 @default.
- W4211163796 hasConceptScore W4211163796C41008148 @default.
- W4211163796 hasLocation W42111637961 @default.
- W4211163796 hasOpenAccess W4211163796 @default.
- W4211163796 hasPrimaryLocation W42111637961 @default.
- W4211163796 hasRelatedWork W1596801655 @default.
- W4211163796 hasRelatedWork W2130043461 @default.
- W4211163796 hasRelatedWork W2350741829 @default.
- W4211163796 hasRelatedWork W2358668433 @default.
- W4211163796 hasRelatedWork W2376932109 @default.
- W4211163796 hasRelatedWork W2382290278 @default.
- W4211163796 hasRelatedWork W2390279801 @default.