Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211171011> ?p ?o ?g. }
- W4211171011 endingPage "318" @default.
- W4211171011 startingPage "309" @default.
- W4211171011 abstract "ConspectusPerylene diimide (PDI) as a classical dye has some advantages, such as structural diversity, tunable optical and electronic properties, strong light absorption, high electron affinity, and good electron-transporting properties and stability. The PDI-based oligomers and polymers are good candidates for n-type semiconductors in organic electronics and photonic devices.A polymer solar cell (PSC) that converts sunlight into electricity is a promising renewable and clean energy technology and has some superiorities, such as simple preparation and being lightweight, low cost, semitransparent, and flexible. For a long time, fullerene derivatives (e.g., PCBM) have been the most important electron acceptors used in the active layer of PSCs. However, PCBM suffers from some disadvantages, for example, weak absorption, a large amount of energy loss, and unstable morphology. Compared to PCBM, PDI-based materials present some advantages: intense visible-light absorption; lowest unoccupied molecular orbital (LUMO) energy levels can be modulated to achieve a suitable charge separation driving force and high open-circuit voltage (VOC); and the molecular configuration can be adjusted to achieve morphology stability. Thus, PDI-based oligomers and polymers are widely used as electron acceptors in the active layer of PSCs. In addition, PDI-based oligomers and polymers are widely used as n-type semiconductors in other electronic and photonic devices, such as organic field-effect transistors (OFETs), light-emitting diodes, lasers, optical switches, and photodetectors.In this Account, we present a brief survey of the developments in PDI-based oligomers and polymers and their applications in organic electronic and photonic devices, especially in solar cells and field-effect transistors. Although parent PDI dyes exhibit strong absorption, large electron affinity, and high electron mobility, the initial bulk-heterojunction PSCs based on PDI acceptors yielded a very low power conversion efficiency (ca. 0.1%). The highly planar configuration of parent PDI causes strong intermolecular π–π stacking, large crystalline domains, and severe donor/acceptor (D/A) phase separation, leading to a low exciton dissociation efficiency and poor device performance. Starting in 2007, our group designed linear-shaped PDI dimers with different bridges, star-shaped PDI trimers, and PDI polymers to overcome excess crystallization and PDI aggregation and to achieve appropriate D/A miscibility and phase separation. Molecular design strategies were developed to promote the planarity of the backbone and down-shifted LUMO level of PDI polymers, which is beneficial for strong intermolecular π–π stacking, high mobility, and good air stability of OFETs. Beyond PSC and OFET applications, PDI polymers can also be used in perovskite solar cells and two-photon absorption. Future research directions toward the performance optimization of PDI oligomers and polymers are also proposed." @default.
- W4211171011 created "2022-02-13" @default.
- W4211171011 creator A5036890878 @default.
- W4211171011 creator A5044756341 @default.
- W4211171011 creator A5047139426 @default.
- W4211171011 date "2022-02-11" @default.
- W4211171011 modified "2023-09-29" @default.
- W4211171011 title "Perylene Diimide-Based Oligomers and Polymers for Organic Optoelectronics" @default.
- W4211171011 cites W1838768475 @default.
- W4211171011 cites W1845761174 @default.
- W4211171011 cites W1931136132 @default.
- W4211171011 cites W1969018524 @default.
- W4211171011 cites W1969545893 @default.
- W4211171011 cites W1978037164 @default.
- W4211171011 cites W1984284109 @default.
- W4211171011 cites W1992878625 @default.
- W4211171011 cites W2012832354 @default.
- W4211171011 cites W2016088184 @default.
- W4211171011 cites W2018094686 @default.
- W4211171011 cites W2020587599 @default.
- W4211171011 cites W2025135376 @default.
- W4211171011 cites W2034174224 @default.
- W4211171011 cites W2038015897 @default.
- W4211171011 cites W2045067271 @default.
- W4211171011 cites W2068839774 @default.
- W4211171011 cites W2069113196 @default.
- W4211171011 cites W2070414456 @default.
- W4211171011 cites W2072869112 @default.
- W4211171011 cites W2075580333 @default.
- W4211171011 cites W2077137383 @default.
- W4211171011 cites W2081214615 @default.
- W4211171011 cites W2082529082 @default.
- W4211171011 cites W2085123660 @default.
- W4211171011 cites W2090552645 @default.
- W4211171011 cites W2095273068 @default.
- W4211171011 cites W2105751718 @default.
- W4211171011 cites W2114561115 @default.
- W4211171011 cites W2118686563 @default.
- W4211171011 cites W2147787148 @default.
- W4211171011 cites W2150930738 @default.
- W4211171011 cites W2160445025 @default.
- W4211171011 cites W2166919770 @default.
- W4211171011 cites W2283558477 @default.
- W4211171011 cites W2313748567 @default.
- W4211171011 cites W2326421814 @default.
- W4211171011 cites W2331731711 @default.
- W4211171011 cites W2333538525 @default.
- W4211171011 cites W2346370504 @default.
- W4211171011 cites W2397131269 @default.
- W4211171011 cites W2460400503 @default.
- W4211171011 cites W2484615015 @default.
- W4211171011 cites W2515655481 @default.
- W4211171011 cites W2534652833 @default.
- W4211171011 cites W2563297055 @default.
- W4211171011 cites W2565514094 @default.
- W4211171011 cites W2568046232 @default.
- W4211171011 cites W2579212672 @default.
- W4211171011 cites W2660057196 @default.
- W4211171011 cites W2742252260 @default.
- W4211171011 cites W2753809657 @default.
- W4211171011 cites W2789787743 @default.
- W4211171011 cites W2792783390 @default.
- W4211171011 cites W2901549506 @default.
- W4211171011 cites W2946867161 @default.
- W4211171011 cites W2946945796 @default.
- W4211171011 cites W3111263647 @default.
- W4211171011 cites W3130993071 @default.
- W4211171011 doi "https://doi.org/10.1021/accountsmr.1c00191" @default.
- W4211171011 hasPublicationYear "2022" @default.
- W4211171011 type Work @default.
- W4211171011 citedByCount "43" @default.
- W4211171011 countsByYear W42111710112022 @default.
- W4211171011 countsByYear W42111710112023 @default.
- W4211171011 crossrefType "journal-article" @default.
- W4211171011 hasAuthorship W4211171011A5036890878 @default.
- W4211171011 hasAuthorship W4211171011A5044756341 @default.
- W4211171011 hasAuthorship W4211171011A5047139426 @default.
- W4211171011 hasConcept C108225325 @default.
- W4211171011 hasConcept C125287762 @default.
- W4211171011 hasConcept C14158195 @default.
- W4211171011 hasConcept C159985019 @default.
- W4211171011 hasConcept C171250308 @default.
- W4211171011 hasConcept C178790620 @default.
- W4211171011 hasConcept C185592680 @default.
- W4211171011 hasConcept C192562407 @default.
- W4211171011 hasConcept C20788544 @default.
- W4211171011 hasConcept C2776026197 @default.
- W4211171011 hasConcept C2779189646 @default.
- W4211171011 hasConcept C2779227376 @default.
- W4211171011 hasConcept C2780824857 @default.
- W4211171011 hasConcept C2781379571 @default.
- W4211171011 hasConcept C2900893 @default.
- W4211171011 hasConcept C32909587 @default.
- W4211171011 hasConcept C49040817 @default.
- W4211171011 hasConcept C521977710 @default.
- W4211171011 hasConcept C66187686 @default.
- W4211171011 hasConcept C75473681 @default.
- W4211171011 hasConcept C87359718 @default.