Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211192415> ?p ?o ?g. }
- W4211192415 endingPage "298" @default.
- W4211192415 startingPage "269" @default.
- W4211192415 abstract "Biosensors are being used for diverse purposes, including food safety, biological studies, drug screening, medical diagnosis, and environmental sensing. They have numerous advantages such as high speed, high sensitivity, low costs, and so forth. Among a various range of biosensors, optical biosensors, in particular, surface plasmon resonance (SPR), have brought new advantages like real-time and label-free detection with higher levels of sensitivity and cost-effectiveness. Considering environmental hazards endangering human health and applications of SPR in environmental monitoring, SPR has indicated great promise, especially in detecting environmental hazards with low molecular weights in complex matrices. Apart from the all as-mentioned positives, there exist some relevant concerns such as data processing, sensor reliability and accuracy, and poor signal-to-noise ratios, all of which can be improved using machine learning (ML) approaches. ML can evaluate large data, produce appropriate results, even from noisy and low-resolution sensing data, and find interrelationships between signals and bioevents. In this chapter, SPR principles and its use for environmental monitoring will be discussed. Finally, different ML algorithms and their applications in different SPR sensors are aimed to be reviewed." @default.
- W4211192415 created "2022-02-13" @default.
- W4211192415 creator A5005816268 @default.
- W4211192415 creator A5031973409 @default.
- W4211192415 creator A5032675076 @default.
- W4211192415 creator A5077543585 @default.
- W4211192415 creator A5079148287 @default.
- W4211192415 date "2022-01-01" @default.
- W4211192415 modified "2023-10-16" @default.
- W4211192415 title "Machine learning in surface plasmon resonance for environmental monitoring" @default.
- W4211192415 cites W1819319716 @default.
- W4211192415 cites W1969649867 @default.
- W4211192415 cites W1971802680 @default.
- W4211192415 cites W1975707897 @default.
- W4211192415 cites W1977652349 @default.
- W4211192415 cites W1978593015 @default.
- W4211192415 cites W1987383213 @default.
- W4211192415 cites W1988505580 @default.
- W4211192415 cites W1990680872 @default.
- W4211192415 cites W1990904169 @default.
- W4211192415 cites W2002461682 @default.
- W4211192415 cites W2002632149 @default.
- W4211192415 cites W2006872220 @default.
- W4211192415 cites W2007251726 @default.
- W4211192415 cites W2010297353 @default.
- W4211192415 cites W2012994930 @default.
- W4211192415 cites W2016489289 @default.
- W4211192415 cites W2019072134 @default.
- W4211192415 cites W2028501442 @default.
- W4211192415 cites W2030551048 @default.
- W4211192415 cites W2033489742 @default.
- W4211192415 cites W2041080386 @default.
- W4211192415 cites W2044684204 @default.
- W4211192415 cites W2046904226 @default.
- W4211192415 cites W2048454780 @default.
- W4211192415 cites W2048620831 @default.
- W4211192415 cites W2049068921 @default.
- W4211192415 cites W2053660315 @default.
- W4211192415 cites W2066897862 @default.
- W4211192415 cites W2070161878 @default.
- W4211192415 cites W2073515924 @default.
- W4211192415 cites W2079380728 @default.
- W4211192415 cites W2088432885 @default.
- W4211192415 cites W2092218029 @default.
- W4211192415 cites W2092709759 @default.
- W4211192415 cites W2093215819 @default.
- W4211192415 cites W2094845707 @default.
- W4211192415 cites W2104451122 @default.
- W4211192415 cites W2117507662 @default.
- W4211192415 cites W2119137363 @default.
- W4211192415 cites W2127159287 @default.
- W4211192415 cites W2128899793 @default.
- W4211192415 cites W2129726749 @default.
- W4211192415 cites W2141875081 @default.
- W4211192415 cites W2142375107 @default.
- W4211192415 cites W2151929586 @default.
- W4211192415 cites W2158541794 @default.
- W4211192415 cites W2217171821 @default.
- W4211192415 cites W2299493855 @default.
- W4211192415 cites W2335321985 @default.
- W4211192415 cites W2343834181 @default.
- W4211192415 cites W2431098894 @default.
- W4211192415 cites W2517873454 @default.
- W4211192415 cites W2520399426 @default.
- W4211192415 cites W2570962709 @default.
- W4211192415 cites W2576404523 @default.
- W4211192415 cites W2604174760 @default.
- W4211192415 cites W2607913693 @default.
- W4211192415 cites W2610919804 @default.
- W4211192415 cites W2619430635 @default.
- W4211192415 cites W2753185460 @default.
- W4211192415 cites W2753999661 @default.
- W4211192415 cites W2761067653 @default.
- W4211192415 cites W2766162919 @default.
- W4211192415 cites W2768962864 @default.
- W4211192415 cites W2775280502 @default.
- W4211192415 cites W2790878280 @default.
- W4211192415 cites W2791030877 @default.
- W4211192415 cites W2791147026 @default.
- W4211192415 cites W2795593945 @default.
- W4211192415 cites W2803281408 @default.
- W4211192415 cites W2806132096 @default.
- W4211192415 cites W2807378338 @default.
- W4211192415 cites W2883122430 @default.
- W4211192415 cites W2883849272 @default.
- W4211192415 cites W2884853356 @default.
- W4211192415 cites W2886111172 @default.
- W4211192415 cites W2887713130 @default.
- W4211192415 cites W2891797827 @default.
- W4211192415 cites W2893279258 @default.
- W4211192415 cites W2897161109 @default.
- W4211192415 cites W2899678845 @default.
- W4211192415 cites W2899864967 @default.
- W4211192415 cites W2904221028 @default.
- W4211192415 cites W2914112367 @default.
- W4211192415 cites W2922193148 @default.
- W4211192415 cites W2945283996 @default.
- W4211192415 cites W2954884276 @default.