Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211194783> ?p ?o ?g. }
- W4211194783 endingPage "290" @default.
- W4211194783 startingPage "281" @default.
- W4211194783 abstract "International Journal of DermatologyVolume 27, Issue 5 p. 281-290 Epidermal Growth Jessica Fransson M.D., Corresponding Author Jessica Fransson M.D. From the Department of Dermatology, Karolinska Sjukhuset, Karolinska Institute, Stockholm, SwedenAddress for correspondence: Jessica Fransson, M.D., Department, Karolinska Sjukhuset, Karolinska Institute, Stockholm, Sweden.Search for more papers by this authorHans Hammar M.D., Hans Hammar M.D. From the Department of Dermatology, Karolinska Sjukhuset, Karolinska Institute, Stockholm, SwedenSearch for more papers by this author Jessica Fransson M.D., Corresponding Author Jessica Fransson M.D. From the Department of Dermatology, Karolinska Sjukhuset, Karolinska Institute, Stockholm, SwedenAddress for correspondence: Jessica Fransson, M.D., Department, Karolinska Sjukhuset, Karolinska Institute, Stockholm, Sweden.Search for more papers by this authorHans Hammar M.D., Hans Hammar M.D. From the Department of Dermatology, Karolinska Sjukhuset, Karolinska Institute, Stockholm, SwedenSearch for more papers by this author First published: June 1988 https://doi.org/10.1111/j.1365-4362.1988.tb02352.xCitations: 2AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Karasek MA. In vitro growth and maturation of epithelial cells from postembryonic skin. J Invest Dermatol. 65: 60–66. 2 Hammar H, Halprin KM. Epidermal cell growth. In: R Marks, E Christophers, eds. The Epidermis in Disease. Lancaster , England : MTP Press, 1981: 243–271. 3 Karasek MA, Chalton ME. Growth of postembryonic skin epithelial cells on collagen gels. J Invest Dermatol. 56: 205–210. 4 Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–344. 5 Rheinwald JG. Serial cultivation of normal human keratinocytes. Methods Cell Biol. 1980; 21A: 229–254. 6 Peehl DM, Ham RG. Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium. In Vitro. 16: 516–525. 7 Baden HP, Kublius J, Macdonald MJ. Normal and psoriatic keratinocytes and fibroblasts compared in culture. J Invest Dermatol. 76: 53–55. 8 Saiag P, Coulomb B, Lebreton C, et al. Psoriatic fibroblasts induce hyperproliferation of normal keratinocytes in a skin equivalent model in vitro. Science 230: 669–672. 9 Karasek MA. Dermal factors affecting epidermal cells in vitro. J Invest Dermatol. 59: 99–101. 10 Karasek MA. Effect of chemical modification of keratinocytes and collagen on keratinocyte-collagen interactions. Curr Probl Dermatol. 10: 143–158. 11 Ham RG. Survival and growth requirements of nontransformed cells. Handbook of Experimental Pharmacology. 57: 13–88. 12 Ham RG, McKeehan WL. Media and growth requirements. Methods Enzymol. 58: 44–93. 13 Flaxman BA, Harper RA: Organ culture of human skin m chemically defined medium. J Invest Dermatol. 64: 96–99. 14 Hawley-Nelson P, Sullivan JE, Kung M, et al. Optimized conditions for the growth of human epidermal cells in culture. J Invest Dermatol. 75: 176–182. 15 Peehl DM, Ham RG. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro. 16: 526–540. 16 McGuire J, Fedarko N, Johanssen E, et al. The influence of retinoids on cultivated human keratinocytes. J Am Acad Dermatol. 6: 630–639. 17 Hashimoto T, Dykes PJ, Marks R. Retinoid-induced inhibition of growth and reduction of spreading of human epidermal cells in culture. Br J Dermatol. 112: 637–646. 18 Brown R, Gray RH, Bernstein IA. Retinoids alter the direction of differentiation in primary cultures of cutaneous keratinocytes. Differentiation 28: 268–278. 19 Smith EL, Walworth NC, Hoalick MF. Effect of 1a, 25-dihy-droxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free media. J Invest Dermatol. 86: 709–714. 20 Kuroki T. Possible functions of 1-alpha, 25-dihydroxyvitamin D3, an active form of vitamin D3, in the differentiation and development of skin. J Invest Dermatol. 84: 459–460. 21 MacLaughlin JA, Gange W, Taylor D, et al. Cultured psoriatic fibroblasts from involved and uninvolved sites have a partial but not absolute resistance to the proliferation–inhibition activity of 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 82: 5409–5412. 22 Jensen PKA, Therkelsen AJ. Cultivation at low temperature as a measure to prevent contamination with fibroblasts in epithelial cultures from human skin. J Invest Dermatol. 77: 210–212. 23 Reaven EP, Cox AJ. Behaviour of adult human skin in organ culture. J Invest Dermatol. 50: 118–128. 24 Eisinger M, Lee JS, Hefton JM, et al. Human epidermal cell cultures: growth and differentiation in the absence of dermal components or medium supplements. Proc Natl Acad Sci USA. 76: 5340–5344. 25 Pentland AP, Marcelo CL. Modulation of proliferation in epidermal keratinocyte cultures by lowered oxygen tension. Exp Cell Res. 145: 31–43. 26 Horikoshi T, Balin AK, Carter DM. Effect of oxygen on the growth of human epidermal keratinocytes. J Invest Dermatol. 86: 424–427. 27 Price FM, Camalier RF, Gantt R, et al. A new culture medium for human skin epithelial cells. In Vitro. 16: 147–158. 28 Fox CH, Sanford KK. Chemical analyses of mammalian sera commonly used as supplements for tissue culture media. Procedure 94121 TCA Manual 4; 233–237. 29 Rowe L, Strasser F, Kasten FH. Phase-contrast time-lapse cinematography of cultivated normal and psoriatic adult human skin. J Invest Dermatol. 50: 390–400. 30 Priestley GC, Adams LW. Mitogenic effects of sera from normal and psoriatic subjects on human skin fibroblasts. Arch Dermatol Res. 277: 13–15. 31 Nishikawa K, Armelin HA, Sato G. Control of ovarian cell growth in culture by serum and pituitary factors. Proc Natl Acad Sci USA. 72: 483–487. 32 Maciag T, Nemore RE, Weinstein R, et al. An endocrine approach to the control of epidermal growth: serum–free cultivation of human keratinocytes. Science 211: 1452–1454. 33 Gilchrest BA, Calhoun JK, Maciag T. Attachment and growth of human keratinocytes in a serum–free environment. J Cell Physiol. 112: 197–206. 34 Tsao MC, Walthall BJ, Ham RG. Clonal growth of normal human epidermal keratinocytes in a defined medium. J Cell Physiol. 110: 219–229. 35 Stenn KS, Madri JA, Tinghitella T, et al. Multiple mechanisms of dissociated epidermal cell spreading. J Cell Biol. 96: 63–67. 36 Levine M. The growth of adult human skin in vitro. Br J Dermatol. 86: 481–490. 37 Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977; 11: 405–416. 38 Milo GE, Ackerman GA, Noyes I. Growth and ultrastructural characterization of proliferating human keratinocytes in vitro without added extrinsic factors. In Vitro. 16: 20–30. 39 Holbrook KA, Hennings H. Phenotypic expression of epidermal cells in vitro: a review. J Invest Dermatol. 81: 11s–24s. 40 Breitkreuz D, Bohnert A, Herzmann E, et al. Differentiation specific functions in cultured and transplanted mouse keratinocytes: environmental influences on ultrastructure and keratin expression. Differentiation 26: 154–169. 41 Asselineau D, Bernard BA, Bailly C, et al. Human epidermis reconstructed by culture: is it “normal” J Invest Dermatol. 1986; 86: 181–186. 42 Green H, Fuchs E, Watt F. Differentiated structural components of the keratinocyte. Cold Spring Harbor Symp Quant Biol. 46(Pt 1): 293–301. 43 West MR, Kenicer KJA, Faed MJW. In vitro growth rates of epidermal cells derived from the skin of psoriatic patients and nonpsoriatic controls. Br J Dermatol. 108: 533–540. 44 Caron GA. Organ culture of normal and psoriatic skin. Arch Dermatol. 97: 575–586. 45 Liu SCC, Parsons CS. Serial cultivation of epidermal keratinocytes from psoriatic plaques. J Invest Dermatol. 81: 54–61. 46 McGuire J, Osber M, Lightfoot L. Two keratins MW 50,000 and 56,000 are synthesized by psoriatic epidermis. Br J Dermatol. 111(Suppl 27): 27–37. 47 Kragballe K, Desjarlais L, Marcelo CL. Increased DNA synthesis of uninvolved psoriatic epidermis is maintained in vitro Br J Dermatol. 112: 263–270. 48 Rowe L, Dixon WJ, Forsythe A. Mitoses in normal and psoriatic epidermis. Br J Dermatol. 98: 293–299. 49 Goodwin P, Hamilton S, Fry L. A comparison between DNA synthesis and mitosis in uninvolved and involved psoriatic epidermis and normal epidermis. Br J Dermatol. 89: 613–618. 50 Liu SC, Karasek M. Isolation and growth of adult human epidermal keratinocytes in cell culture. J Invest Dermatol. 71: 157–162. 51 Orfanos CE, Schaumburg-Lever G, Mahrle G, et al. Alterations of cell surfaces as a pathogenic factor in psoriasis. Arch Dermatol. 107: 38–46. 52 Gommans JM, Bergers M, vanErp PEJ, et al. Studies on the plasma membrane of normal and psoriatic keratinocytes 1. Preparation of material and morphological characterization. Br J Dermatol. 101: 407–412. 53 Kariniemi AL, Lehto VP, Virtanen I. Surface glycoproteins of cultured human keratinocytes from normal and uninvolved psoriatic epidermis. Br J Dermatol. 109: 531–537. 54 Bretscher MS. The molecules of the cell membrane. Sci Am. 253(4): 86–90. 55 Snyder SH. The molecular basis of communication between cells. Sci Am. 1985; 253 (4): 114–123. 56 Berridge MJ. The molecular basis of communication within the cell. Sci Am. 253(4): 124–134. 57 Carafoli E, Penniston JT. The calcium signal. Sci Am. 253(5): 50–58. 58 Yoshikawa K, Adachi K, Halprin KM, et al. The effects of catecholamine and related compounds on the adenyl cyclase system in the epidermis. Br J Dermatol. 93: 29–36. 59 Adachi K, Yoshikawa K, Halprin KM, et al. Prostaglandins and cyclic AMP in epidermis. Br J Dermatol. 92: 381–388. 60 Lizuka H, Adachi K, Halprin KM, et al. Histamine (H2) receptor-adenylate cyclase system in pig skin (epidermis). Biochim Biophys Acta. 437: 150–157. 61 Lizuka H, Adachi K, Halprin KM, et al: Adenosine and adenine nucleotides stimulation of skin (epidermal) adenylate cyclase. Biochim Biophys Acta 444: 685–693. 62 Adachi K, Aoyagi T, Lizuka H, et al. Cyclic GMP system in the epidermis. Curr Probl Dermatol. 10: 39–65. 63 Voorhees JJ, Marcelo CL, Duell EA. Cyclic AMP, cyclic GMP, and glucocorticoids as potential metabolic regulators of epidermal proliferation and differentiation. J Invest Dermatol. 65: 179–190. 64 Yoshikawa K, Adachi K, Halprin KM, et al. Cyclic AMP in skin: effects of acute ischaemia. Br J Dermatol. 92: 249–254. 65 Lizuka H, Adachi K, Halprin KM, et al. Cyclic GMP system in epidermis: I. Effect of ischaemia. J Invest Dermatol. 73: 220–223. 66 Lizuka H, Ohkawara A. “Ischemic” rise of epidermal cyclic AMP is a β-adrenergic adenylate cyclase-dependent process. J Invest Dermatol. 86: 271–274. 67 Lizuka H, Adachi K, Halprin KM, et al. Epinephrine activation of pig skin adenylate cyclase in vivo and subsequent refractoriness to activation. J Invest Dermatol. 70: 119–122. 68 Bullough WS. The control of mitotic activity in adult mammalian tissues. Biol Rev. 37: 307–342. 69 Marks R, Dykes PJ, Tan CY. Histamine and epidermal proliferation. Br J Dermatol. 107: 15–20. 70 Adachi K, Lizuka H, Halprin KM, et al. Epidermal cyclic AMP is not decreased in psoriasis lesions. J Invest Dermatol. 74: 74–76. 71 Adachi K, Aoyagi T, Nemoto O, et al. Epidermal cyclic GMP is increased in psoriasis lesions. J Invest Dermatol. 76: 19–20. 72 Marcelo CL, Duell EA, Stawiski MA, et al. Cyclic nucleotide levels in psoriatic and normal keratomed epidermis. J Invest Dermatol. 72: 20–24. 73 Cantieri JS, Graff G, Goldberg ND. Cyclic GMP metabolism in psoriasis: activation of soluble epidermal guanylate cyclase by arachidonic acid and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. J Invest Dermatol. 74: 234–237. 74 Mahrle G, Orfanos CE. β-adrenerge Stimulation membrangebundener Adenylcyklase in normaler Epidermis und mangelnde Stimulierbarkeit bei Psoriasis. Arch Dermatol Res. 253: 195–202. 75 Yoshikawa K, Mori N, Hadame K, et al. Differences in response of psoriatic epidermis in cyclic AMP accumulation against certain adenyl cyclase agonists. Acta Derm Venereol (Stockh). 60: 95–98. 76 Lizuka H, Adachi K, Halprin KM, et al. Cyclic AMP accumulation in psoriatic skin: differential responses to histamine, AMP, and epinephrine by the uninvolved and involved epidermis. J Invest Dermatol. 70: 250–253. 77 Aoyagi T, Adachi K, Halprin KM, et al. The effect of histamine on epidermal outgrowth: its possible dual role as an inhibitor and stimulator. J Invest Dermatol. 76: 24–27. 78 Green H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell. 15: 801–811. 79 Okada N, Kitano Y, Ichihara K. Effects of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. J Invest Dermatol. 79: 42–47. 80 Marcelo CL, Tomich J. Cyclic AMP, glucocorticoid, and retinoid modulation of in vitro keratinocyte growth. J Invest Dermatol. 81: 64s–68s. 81 Uzuka M, Adachi K, Lizuka H, et al. Epidermal adenylate cyclase systems: the retention of hormone responsiveness after enzymatic separation of pure epidermis. J Invest Dermatol. 69: 194–197. 82 Gommans JM, Bergers M, VanErp PEJ, et al. Studies on the plasma membrane of normal and psoriatic keratinocytes 2: cyclic AMP and its response to hormonal stimulation. Br J Dermatol. 101: 413–419. 83 Kumar R, Tao M, Solomon LM. Cyclic 3′,5′-adenosine monophosphate-stimulated protein kinase from human skin. J Invest Dermatol. 57: 312–315. 84 Mier PD, Van denHuark J. Cyclic 3′,5′-adenosine monophosphate-dependent protein kinase of skin. I. Measurement and properties. Br J Dermatol. 87: 571–576. 85 Kumar R, Tao M, Solomon LM. Adenosine 3′,5′-cyclic monophosphate-stimulated protein kinase from human skin. II. Isolation and properties of multiple forms. J Invest Dermatol. 59: 196–201. 86 Kumar R, Solomon LM, Cobb J, et al. Adenosine 3′,5′-mono-phosphate-dependent protein kinase of neonatal human skin. J Invest Dermatol. 66: 14–16. 87 Nemoto O, Adachi K, Takeda J, et al. Cyclic AMP-dependent protein kinase isozymes of pig skin and human skin from normal and psoriatic subjects. J Invest Dermatol. 80: 111–115. 88 Yoshikawa K, Takeda J, Nemoto O, et al. Activation of cAMP-dependent protein kinase in epidermis by the compounds which increase epidermal cAMP. J Invest Dermatol. 77: 397–401. 89 Halprin KM, Taylor JR, Levine V, et al. Agents that activate cyclic AMP–dependent protein kinase inhibit explant culture growth and mitotic activity. J Invest Dermatol. 81: 553–557. 90 Yoshikawa K, Takeda J, Nemoto O, et al. Phosphorylation of pig epidermal soluble protein by endogenous cAMP-dependent protein kinase. J Invest Dermatol. 80: 108–111. 91 Voorhees JJ. Editorial: Leukotrienes and other lipoxygenase products in the pathogenesis and therapy of psoriasis and other dermatoses. Arch Dermatol. 119: 541–547. 92 Eaglstein WH, Weinstein CD: Prostaglandin and DMA synthesis in human skin: possible relationship to ultraviolet light effects. J Invest Dermatol. 64: 386–389. 93 Lowe NJ, Stoughton RB. Effects of topical prostaglandin E2 analogue on normal hairless mouse epidermal DMA synthesis. J Invest Dermatol. 68: 134–137. 94 Marks F, Fürstenberger C, Kownatzki E. Prostaglandin E-mediated mitogenic stimulation of mouse epidermis in vivo by divalent cation ionophore A23187 and by tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate. Cancer Res. 41: 696–702. 95 Hammarström S, Hamberg M, Samuaelsson B, et al. Increased concentrations of nonesterified arachidonic acid, 12 L–hy-droxy-5,8,10,14-eicosatetraenoic acid, prostaglandin E2 and prostaglandin F2a in epidermis of psoriasis. Proc Natl Acad Sci USA. 72: 5130–5134. 96 Brain SD, Camp RDR, Dowd PM, et al. Psoriasis and leukotriene B4. Lancet. 2: 762–763. 97 Forster S, Llderton E, Norris JBF, et al. Characterization and activity of phospholipase A2 in normal human epidermis and in lesion–free epidermis of patients with psoriasis or eczema. Br J Dermatol. 112: 135–147. 98 Chan CC, Duhamel L, Ford-Hutchinson A. Leukotriene B4 and 12-hydroxytetraenoic acid stimulate epidermal proliferation in vivo in the guinea–pig. J Invest Dermatol. 85: 333–334. 99 Soter NA, Lewis RA, Corey EJ, et al. Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin. J Invest Dermatol. 80: 115–119. 100 Kragballe K, Herlin T. Benoxaprofen improves psoriasis. Arch Dermatol. 119: 548–552. 101 Kondoh H, Sato Y, Kanoh H. Arachidonic acid metabolism in cultured mouse keratinocytes. J Invest Dermatol. 85: 64–69. 102 Hammarström S, Lindgren JÅ, Marcelo C, et al. Arachidonic acid transformations in normal and psoriatic skin. J Invest Dermatol. 73: 180–183. 103 Grabbe J, Czarnetzki BM, Mardin M. Release of lipoxygenase products of arachidonic acid from freshly isolated human keratinocytes. Arch Dermatol Res. 276: 128–130. 104 Kragballe K, Desjarlais L, Voorhees JJ. Leukotrienes B4, C4and D4 stimulate DNA synthesis in cultured human epidermal keratinocytes. Br J Dermatol. 13: 43–52. 105 Skerrow CJ. Intracellular adhesion and its role in epidermal differentiation. Invest Cell Pathol. 1: 23–37. 106 Patel H, Marcelo C, Voorhees JJ, et al. In vitro alterations of epidermal cell adhesion induced by temperature, substrate and cations. J Invest Dermatol. 76: 474–479. 107 Boyce ST, Ham RG. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol. 81: 33s–40s. 108 Dykes PJ, Jenner LA, Marks R. The effect of calcium on the initiation and growth of human epidermal cells. Arch Dermatol Res. 273: 225–231. 109 Hennings H, Michael D, Cheng C, et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19: 245–254. 110 Marcelo CL, Gold RC, Fairley JA. Effect of 1.2 mmol/l calcium, triamcinolone acetonide, and retinoids on low calcium regulated keratinocyte differentiation. Br J Dermatol. 111(Suppl 27): 64–72. 111 Aoyagi T, Umeda K, Kato N, et al. Effects of calcium and calcium-ionophore on the outgrowing epidermis-possible activation of epidermal phospholipase A2. J Dermatol. 10: 313–319. 112 Schulman H, Greengard R. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator”. Proc Natl Acad Sci USA. 75: 5432–5436. 113 Cheung WY, Lynch TJ, Wallace RW. An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. Adv Cycl Nucl Res. 9: 233–251. 114 Fairley JA, Marcelo CL, Hogan VA, et al. Increased calmodulin levels in psoriasis and low Ca++ regulated mouse epidermal keratinocyte cultures. J Invest Dermatol. 84: 195–198. 115 MacNeil S, Tucker WFG. Epidermal calmodulin levels in psoriasis. J Invest Dermatol. 85: 389. 116 Mizumoto T, Hashimoto Y, Hirokawa M, et al. Calmodulin activities are significantly increased in both uninvolved and involved epidermis in psoriasis. J Invest Dermatol. 85: 450–452. 117 Carpenter G. The regulation of cell proliferation: advances in the biology and mechanism of action of epidermal growth factor. J Invest Dermatol. 71: 283–287. 118 Covelli I, Rossi R, Mozzi R, et al. Synthesis of bioactive 131 l-labeled epidermal growth factor and its distribution in rat tissues. Eur J Biochem. 27: 225–230. 119 Nanney LB, McKanna JA, Stoscheck CM, et al. Visualization of epidermal growth factor receptors in human epidermis. J Invest Dermatol. 82: 165–169. 120 Nanney LB, Magid M, Stoscheck CM, et al. Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J Invest Dermatol. 83: 385–393. 121 Stoscheck CM, Soderquist AM, Carpenter G. Biosynthesis of the epidermal growth factor receptor in cultured human cells. Endocrinology 116: 528–535. 122 Komoriya A, Hortsch M, Meyers C, et al. Biologically active synthetic fragments of epidermal growth factor: localization of a major receptor-binding region. Proc Natl Acad Sci USA. 81: 1351–1355. 123 Nanney LB, Stoscheck CM, Lynch JB, et al. Are epidermal growth factor (EGF) receptors altered in psoriasis Clin Res. 1984; 32: 605A. 124 Nanney LB, Stoscheck CM, Magid M, et al. Altered (125I) epidermal growth factor binding and receptor distribution in psoriasis. J Invest Dermatol. 86: 260–265. 125 O'Keefe E, Battin T, Payne R Jr. Epidermal growth factor receptor in human epidermal cells: direct demonstration in cultured cells. J Invest Dermatol. 78: 482–487. 126 Hoath SB, Lakshmanan J, Scott SM, et al. Effect of thyroid hormones on epidermal growth factor concentration in neonatal mouse skin. Endocrinology 112: 308–314. 127 Hoath SB, Lakshmanan J, Fisher DA. Epidermal growth factor binding to neonatal mouse skin explants and membrane preparations-effect of triiodothyronine. Pediatr Res. 19: 277–281. 128 Frati C, Covelli I, Mozzi R, et al. Mechanism of action of the epidermal growth factor: effect on the sulfhydryl and disulphide groups content of the mouse epidermis during keratinization. Cell Differentiation 1: 239–244. 129 Stastny M, Cohen S. Epidermal growth factor IV. The induction of ornithine decarboxylase. Biochim Biophys Acta. 204: 578–589. 130 Fleckman P, Langdon R, McGuire J. Epidermal growth factor stimulates ornithine decarboxylase activity in cultured mammalian keratinocytes. J Invest Dermatol. 82: 85–89. 131 Aoyagi T, Suya H, Kato N, et al. Epidermal growth factor stimulates release of arachidonic acid in pig epidermis. J Invest Dermatol. 84: 168–171. 132 Nishizuka Y. Protein kinases in signal transduction. Trends in Biochem Sci. 9: 163–166. 133 Strosberg AD. Receptors and recognition: from ligand binding to gene structure. TIBS. 9: 166–169. 134 Aoyagi T, Adachi K, Halprin KM, et al. Stimulation of protein phosphorylation by epidermal growth factor in pig skin (epidermis). J Invest Dermatol. 74: 421–424. 135 Aoyagi T, Umeda K, Kato N, et al. Epidermal growth factor stimulates phosphorylation of pig epidermal keratin protein. J Invest Dermatol. 81: 49–53. 136 Aoyagi T, Suya H, Umeda K, et al. Epidermal growth factor stimulates tyrosine phosphorylation of pig epidermal fibrous keratin. J Invest Dermatol. 84: 118–121. 137 Gentleman S, Martensen TM, Digiovanna JJ, et al. Protein tyrosine kinase and protein phosphotyrosine phosphatase in normal and psoriatic skin. Biochim Biophys Acta. 798: 53–59. 138 Barnes D, Sato G. Serum-free cell culture: A unifying approach. Cell 22: 649–655. 139 Verrando P, Ortonne JP. Insulin receptors in cultured human keratinocytes. Br J Dermatol. 111(Suppl 27): 232–234. 140 Haring HU, Kasuga M, White MF, et al. Phosphorylation and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatase activity. Biochemistry 23: 3298–3306. 141 Taylor A, Hogan BLM, Watt FM. Biosynthesis of EGF receptor, transferrin receptor and colligen by cultured human keratinocytes and the effect of retinoic acid. Exp Cell Res. 159: 47–54. 142 Weber G, Neidhardt M, Schmidt A, et al. Korrelation von Wachstumshormon und klinischem Bild der Psoriasis. Arch Dermatol Res. 270: 129–140. 143 Hopsu-Havu VK, Terho PE, Vanha-Perttula TP, et al. Response of blood insulin and growth hormone to glucose infusion in normal, psoriatic and diabetic persons. Acta Derm Venereol (Stockh). 53: 39–44. 144 Hopsu-Havu VK, Niinikoski A, Haapalahti JE, et al. Serum insulin and growth hormone response to arginine infusion in healthy and psoriatic persons. Dermatologica. 146: 205–210. 145 MacKie RM, Beastall CM, Thomson JA. Growth hormone levels in psoriasis. Arch Dermatol Res. 275: 207. 146 Weber G, Neidhardt M, Frey H, et al. Treatment of psoriasis with bromocriptin. Arch Dermatol Res. 271: 437–439. 147 Guilhou JJ, Guilhou E. Bromocriptin treatment of psoriasis. Arch Dermatol Res. 273: 159–160. 148 Weber G, Klughardt G, Neidhardt M, et al. Treatment of psoriasis with somatostatin. Arch Dermatol Res. 272: 31–36. 149 Ghirlanda G, Uccioli L, Perri F, et al. Epidermal growth factor, somatostatin and psoriasis. Lancet. 1983; 65. 150 Bloom SR, Polak JM. Regulatory peptides and the skin. Clin Exp Dermatol. 8: 3–18. 151 Whimster IW. Nerve supply as a stimulator of growth of tissues, including skin. Br J Dermatol. 95(Suppl 19): 9. 152 FitzGerald MJT, Folan JC, O'Brien TM. The innervation of hyperplastic epidermis in the mouse: a light microscopic study. J Invest Dermatol. 64: 169–174. 153 Ponec M, Kempenaar JA, De Kloaet ER. Corticoids and cultured human epidermal keratinocytes: specific intracellular binding and clinical efficacy. J Invest Dermatol. 76: 211–214. 154 Hughes A, Yardley HJ. Dexamethasone receptors in human epidermis. Br J Dermatol. 106: 299–302. 155 Epstein EH, Bonifas JM. Glucocorticoid receptors of normal human epidermis. J Invest Dermatol. 78: 144–146. 156 Ponec M. Effects of glucocorticoids on cultured skin fibroblasts and keratinocytes. Int J Dermatol. 23: 11–24. 157 Lizuka H, Kamigaki K, Nemoto O, et al. Effects of hydrocortisone on the adrenaline-adenylate cyclase system of the skin. Br J Dermatol. 102: 703–710. Citing Literature Volume27, Issue5June 1988Pages 281-290 ReferencesRelatedInformation" @default.
- W4211194783 created "2022-02-13" @default.
- W4211194783 creator A5036116892 @default.
- W4211194783 creator A5072170565 @default.
- W4211194783 date "1988-06-01" @default.
- W4211194783 modified "2023-10-14" @default.
- W4211194783 title "Epidermal Growth" @default.
- W4211194783 cites W1489352447 @default.
- W4211194783 cites W1587437463 @default.
- W4211194783 cites W1595540303 @default.
- W4211194783 cites W1811776402 @default.
- W4211194783 cites W192076488 @default.
- W4211194783 cites W1964539744 @default.
- W4211194783 cites W1964890240 @default.
- W4211194783 cites W1967156295 @default.
- W4211194783 cites W1968193887 @default.
- W4211194783 cites W1968525798 @default.
- W4211194783 cites W1971286046 @default.
- W4211194783 cites W1971879413 @default.
- W4211194783 cites W1972302360 @default.
- W4211194783 cites W1973244880 @default.
- W4211194783 cites W1974454826 @default.
- W4211194783 cites W1974828599 @default.
- W4211194783 cites W1977064819 @default.
- W4211194783 cites W1979580749 @default.
- W4211194783 cites W1986070369 @default.
- W4211194783 cites W1988523225 @default.
- W4211194783 cites W1988719176 @default.
- W4211194783 cites W1989946915 @default.
- W4211194783 cites W1990126094 @default.
- W4211194783 cites W1990454156 @default.
- W4211194783 cites W1990476853 @default.
- W4211194783 cites W1991185441 @default.
- W4211194783 cites W1991543012 @default.
- W4211194783 cites W1992199034 @default.
- W4211194783 cites W1993915939 @default.
- W4211194783 cites W1995568859 @default.
- W4211194783 cites W1995899241 @default.
- W4211194783 cites W1998360328 @default.
- W4211194783 cites W1998727341 @default.
- W4211194783 cites W2000292821 @default.
- W4211194783 cites W2000976891 @default.
- W4211194783 cites W2004436900 @default.
- W4211194783 cites W2004950234 @default.
- W4211194783 cites W2007266472 @default.
- W4211194783 cites W2007478364 @default.
- W4211194783 cites W2009356271 @default.
- W4211194783 cites W2010866516 @default.
- W4211194783 cites W2012125824 @default.
- W4211194783 cites W2013468636 @default.
- W4211194783 cites W2015467239 @default.
- W4211194783 cites W2016435958 @default.
- W4211194783 cites W2019032943 @default.
- W4211194783 cites W2019694256 @default.
- W4211194783 cites W2020120224 @default.
- W4211194783 cites W2021854922 @default.
- W4211194783 cites W2021967363 @default.
- W4211194783 cites W2022279286 @default.
- W4211194783 cites W2023435913 @default.
- W4211194783 cites W2024357543 @default.
- W4211194783 cites W2025378644 @default.
- W4211194783 cites W2028554691 @default.
- W4211194783 cites W2028656830 @default.
- W4211194783 cites W2029019183 @default.
- W4211194783 cites W2030843965 @default.
- W4211194783 cites W2032201449 @default.
- W4211194783 cites W2033471653 @default.
- W4211194783 cites W2033490524 @default.
- W4211194783 cites W2036050102 @default.
- W4211194783 cites W2037129706 @default.
- W4211194783 cites W2037895952 @default.
- W4211194783 cites W2038085058 @default.
- W4211194783 cites W2039679831 @default.
- W4211194783 cites W2044000494 @default.
- W4211194783 cites W2044070188 @default.
- W4211194783 cites W2045563801 @default.
- W4211194783 cites W2046180557 @default.
- W4211194783 cites W2048658592 @default.
- W4211194783 cites W2049043712 @default.
- W4211194783 cites W2049879342 @default.
- W4211194783 cites W2051874884 @default.
- W4211194783 cites W2052395361 @default.
- W4211194783 cites W2054499427 @default.
- W4211194783 cites W2055496862 @default.
- W4211194783 cites W2056971358 @default.
- W4211194783 cites W2059245769 @default.
- W4211194783 cites W2059472117 @default.
- W4211194783 cites W2059497968 @default.
- W4211194783 cites W2061803289 @default.
- W4211194783 cites W2062273494 @default.
- W4211194783 cites W2062674601 @default.
- W4211194783 cites W2062821623 @default.
- W4211194783 cites W2063399540 @default.
- W4211194783 cites W2063523179 @default.
- W4211194783 cites W2065166932 @default.
- W4211194783 cites W2065432457 @default.
- W4211194783 cites W2065723241 @default.
- W4211194783 cites W2066069537 @default.