Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211194897> ?p ?o ?g. }
- W4211194897 endingPage "107151" @default.
- W4211194897 startingPage "107151" @default.
- W4211194897 abstract "Shimming in the context of nuclear magnetic resonance aims to achieve a uniform magnetic field distribution, as perfect as possible, and is crucial for useful spectroscopy and imaging. Currently, shimming precedes most acquisition procedures in the laboratory, and this mostly semi-automatic procedure often needs to be repeated, which can be cumbersome and time-consuming. The paper investigates the feasibility of completely automating and accelerating the shimming procedure by applying deep learning (DL). We show that DL can relate measured spectral shape to shim current specifications and thus rapidly predict three shim currents simultaneously, given only four input spectra. Due to the lack of accessible data for developing shimming algorithms, we also introduce a database that served as our DL training set, and allows inference of changes to 1H NMR signals depending on shim offsets. In situ experiments of deep regression with ensembles demonstrate a high success rate in spectral quality improvement for random shim distortions over different neural architectures and chemical substances. This paper presents a proof-of-concept that machine learning can simplify and accelerate the shimming problem, either as a stand-alone method, or in combination with traditional shimming methods. Our database and code are publicly available." @default.
- W4211194897 created "2022-02-13" @default.
- W4211194897 creator A5020714327 @default.
- W4211194897 creator A5026362868 @default.
- W4211194897 creator A5047998886 @default.
- W4211194897 creator A5048812285 @default.
- W4211194897 date "2022-03-01" @default.
- W4211194897 modified "2023-10-01" @default.
- W4211194897 title "Deep regression with ensembles enables fast, first-order shimming in low-field NMR" @default.
- W4211194897 cites W1534477342 @default.
- W4211194897 cites W1964497034 @default.
- W4211194897 cites W1972102938 @default.
- W4211194897 cites W1986477674 @default.
- W4211194897 cites W2024894024 @default.
- W4211194897 cites W2024991751 @default.
- W4211194897 cites W2026862934 @default.
- W4211194897 cites W2037662038 @default.
- W4211194897 cites W2039708501 @default.
- W4211194897 cites W2041438133 @default.
- W4211194897 cites W2042463938 @default.
- W4211194897 cites W2051693105 @default.
- W4211194897 cites W2061082730 @default.
- W4211194897 cites W2062216803 @default.
- W4211194897 cites W2067473529 @default.
- W4211194897 cites W2071907814 @default.
- W4211194897 cites W2072176581 @default.
- W4211194897 cites W2073274935 @default.
- W4211194897 cites W2093657736 @default.
- W4211194897 cites W2100736103 @default.
- W4211194897 cites W2115022595 @default.
- W4211194897 cites W2122347864 @default.
- W4211194897 cites W2127470768 @default.
- W4211194897 cites W2164921999 @default.
- W4211194897 cites W2165698076 @default.
- W4211194897 cites W2169369819 @default.
- W4211194897 cites W2171074980 @default.
- W4211194897 cites W2194775991 @default.
- W4211194897 cites W2216263878 @default.
- W4211194897 cites W2557797120 @default.
- W4211194897 cites W2621028221 @default.
- W4211194897 cites W2777741489 @default.
- W4211194897 cites W2792165586 @default.
- W4211194897 cites W2793745122 @default.
- W4211194897 cites W2883668228 @default.
- W4211194897 cites W2891503716 @default.
- W4211194897 cites W2919115771 @default.
- W4211194897 cites W2957746479 @default.
- W4211194897 cites W2958212330 @default.
- W4211194897 cites W2959135669 @default.
- W4211194897 cites W2972243934 @default.
- W4211194897 cites W2999781454 @default.
- W4211194897 cites W3014998807 @default.
- W4211194897 cites W3100777112 @default.
- W4211194897 cites W4206706211 @default.
- W4211194897 cites W4212883601 @default.
- W4211194897 cites W865106923 @default.
- W4211194897 doi "https://doi.org/10.1016/j.jmr.2022.107151" @default.
- W4211194897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35183922" @default.
- W4211194897 hasPublicationYear "2022" @default.
- W4211194897 type Work @default.
- W4211194897 citedByCount "4" @default.
- W4211194897 countsByYear W42111948972022 @default.
- W4211194897 countsByYear W42111948972023 @default.
- W4211194897 crossrefType "journal-article" @default.
- W4211194897 hasAuthorship W4211194897A5020714327 @default.
- W4211194897 hasAuthorship W4211194897A5026362868 @default.
- W4211194897 hasAuthorship W4211194897A5047998886 @default.
- W4211194897 hasAuthorship W4211194897A5048812285 @default.
- W4211194897 hasBestOaLocation W42111948971 @default.
- W4211194897 hasConcept C108583219 @default.
- W4211194897 hasConcept C11413529 @default.
- W4211194897 hasConcept C119857082 @default.
- W4211194897 hasConcept C126322002 @default.
- W4211194897 hasConcept C153180895 @default.
- W4211194897 hasConcept C154945302 @default.
- W4211194897 hasConcept C2776214188 @default.
- W4211194897 hasConcept C2779929075 @default.
- W4211194897 hasConcept C2780493668 @default.
- W4211194897 hasConcept C41008148 @default.
- W4211194897 hasConcept C50644808 @default.
- W4211194897 hasConcept C71924100 @default.
- W4211194897 hasConceptScore W4211194897C108583219 @default.
- W4211194897 hasConceptScore W4211194897C11413529 @default.
- W4211194897 hasConceptScore W4211194897C119857082 @default.
- W4211194897 hasConceptScore W4211194897C126322002 @default.
- W4211194897 hasConceptScore W4211194897C153180895 @default.
- W4211194897 hasConceptScore W4211194897C154945302 @default.
- W4211194897 hasConceptScore W4211194897C2776214188 @default.
- W4211194897 hasConceptScore W4211194897C2779929075 @default.
- W4211194897 hasConceptScore W4211194897C2780493668 @default.
- W4211194897 hasConceptScore W4211194897C41008148 @default.
- W4211194897 hasConceptScore W4211194897C50644808 @default.
- W4211194897 hasConceptScore W4211194897C71924100 @default.
- W4211194897 hasFunder F4320311048 @default.
- W4211194897 hasLocation W42111948971 @default.
- W4211194897 hasLocation W42111948972 @default.
- W4211194897 hasLocation W42111948973 @default.
- W4211194897 hasOpenAccess W4211194897 @default.