Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211199510> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4211199510 endingPage "123" @default.
- W4211199510 startingPage "123" @default.
- W4211199510 abstract "This paper considers k-farthest neighbor (kFN) join queries in spatial networks where the distance between two points is the length of the shortest path connecting them. Given a positive integer k, a set of query points Q, and a set of data points P, the kFN join query retrieves the k data points farthest from each query point in Q. There are many real-life applications using kFN join queries, including artificial intelligence, computational geometry, information retrieval, and pattern recognition. However, the solutions based on the Euclidean distance or nearest neighbor search are not suitable for our purpose due to the difference in the problem definition. Therefore, this paper proposes a cluster nested loop join (CNLJ) algorithm, which clusters query points (data points) into query clusters (data clusters) and reduces the number of kFN queries required to perform the kFN join. An empirical study was performed using real-life roadmaps to confirm the superiority and scalability of the CNLJ algorithm compared to the conventional solutions in various conditions." @default.
- W4211199510 created "2022-02-13" @default.
- W4211199510 creator A5066224777 @default.
- W4211199510 date "2022-02-09" @default.
- W4211199510 modified "2023-09-30" @default.
- W4211199510 title "Cluster Nested Loop k-Farthest Neighbor Join Algorithm for Spatial Networks" @default.
- W4211199510 cites W1970696407 @default.
- W4211199510 cites W1972098431 @default.
- W4211199510 cites W2090096548 @default.
- W4211199510 cites W2107946060 @default.
- W4211199510 cites W2115687456 @default.
- W4211199510 cites W2160080073 @default.
- W4211199510 cites W2571253401 @default.
- W4211199510 cites W2756077905 @default.
- W4211199510 cites W2782331958 @default.
- W4211199510 cites W2797054480 @default.
- W4211199510 cites W2973571584 @default.
- W4211199510 cites W3011266996 @default.
- W4211199510 cites W3035278459 @default.
- W4211199510 cites W3089175208 @default.
- W4211199510 cites W3099297429 @default.
- W4211199510 cites W3187908637 @default.
- W4211199510 doi "https://doi.org/10.3390/ijgi11020123" @default.
- W4211199510 hasPublicationYear "2022" @default.
- W4211199510 type Work @default.
- W4211199510 citedByCount "1" @default.
- W4211199510 countsByYear W42111995102022 @default.
- W4211199510 crossrefType "journal-article" @default.
- W4211199510 hasAuthorship W4211199510A5066224777 @default.
- W4211199510 hasBestOaLocation W42111995101 @default.
- W4211199510 hasConcept C113238511 @default.
- W4211199510 hasConcept C11413529 @default.
- W4211199510 hasConcept C114614502 @default.
- W4211199510 hasConcept C124101348 @default.
- W4211199510 hasConcept C1306188 @default.
- W4211199510 hasConcept C154945302 @default.
- W4211199510 hasConcept C157692150 @default.
- W4211199510 hasConcept C164120249 @default.
- W4211199510 hasConcept C172722865 @default.
- W4211199510 hasConcept C177264268 @default.
- W4211199510 hasConcept C192939062 @default.
- W4211199510 hasConcept C199360897 @default.
- W4211199510 hasConcept C203570394 @default.
- W4211199510 hasConcept C23123220 @default.
- W4211199510 hasConcept C2776124973 @default.
- W4211199510 hasConcept C2777735758 @default.
- W4211199510 hasConcept C33923547 @default.
- W4211199510 hasConcept C41008148 @default.
- W4211199510 hasConcept C48044578 @default.
- W4211199510 hasConcept C77088390 @default.
- W4211199510 hasConcept C80444323 @default.
- W4211199510 hasConcept C97854310 @default.
- W4211199510 hasConceptScore W4211199510C113238511 @default.
- W4211199510 hasConceptScore W4211199510C11413529 @default.
- W4211199510 hasConceptScore W4211199510C114614502 @default.
- W4211199510 hasConceptScore W4211199510C124101348 @default.
- W4211199510 hasConceptScore W4211199510C1306188 @default.
- W4211199510 hasConceptScore W4211199510C154945302 @default.
- W4211199510 hasConceptScore W4211199510C157692150 @default.
- W4211199510 hasConceptScore W4211199510C164120249 @default.
- W4211199510 hasConceptScore W4211199510C172722865 @default.
- W4211199510 hasConceptScore W4211199510C177264268 @default.
- W4211199510 hasConceptScore W4211199510C192939062 @default.
- W4211199510 hasConceptScore W4211199510C199360897 @default.
- W4211199510 hasConceptScore W4211199510C203570394 @default.
- W4211199510 hasConceptScore W4211199510C23123220 @default.
- W4211199510 hasConceptScore W4211199510C2776124973 @default.
- W4211199510 hasConceptScore W4211199510C2777735758 @default.
- W4211199510 hasConceptScore W4211199510C33923547 @default.
- W4211199510 hasConceptScore W4211199510C41008148 @default.
- W4211199510 hasConceptScore W4211199510C48044578 @default.
- W4211199510 hasConceptScore W4211199510C77088390 @default.
- W4211199510 hasConceptScore W4211199510C80444323 @default.
- W4211199510 hasConceptScore W4211199510C97854310 @default.
- W4211199510 hasFunder F4320322120 @default.
- W4211199510 hasIssue "2" @default.
- W4211199510 hasLocation W42111995101 @default.
- W4211199510 hasLocation W42111995102 @default.
- W4211199510 hasOpenAccess W4211199510 @default.
- W4211199510 hasPrimaryLocation W42111995101 @default.
- W4211199510 hasRelatedWork W1629743078 @default.
- W4211199510 hasRelatedWork W2045171385 @default.
- W4211199510 hasRelatedWork W2080173026 @default.
- W4211199510 hasRelatedWork W2087088004 @default.
- W4211199510 hasRelatedWork W2359531628 @default.
- W4211199510 hasRelatedWork W2373422372 @default.
- W4211199510 hasRelatedWork W2389935151 @default.
- W4211199510 hasRelatedWork W2393251057 @default.
- W4211199510 hasRelatedWork W4211199510 @default.
- W4211199510 hasRelatedWork W2154412972 @default.
- W4211199510 hasVolume "11" @default.
- W4211199510 isParatext "false" @default.
- W4211199510 isRetracted "false" @default.
- W4211199510 workType "article" @default.