Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211203100> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4211203100 endingPage "177" @default.
- W4211203100 startingPage "159" @default.
- W4211203100 abstract "Recognition of handwritten documents is an essential part of today’s world for various reasons such as analysis, data extraction, etc. Recognition of handwritten in Indian regional languages, for, e.g., Tamil character is very difficult, due to variations in size, style, and orientation angle. Limited availability of handwritten character dataset makes it difficult to achieve high accuracy for all the characters present in the language. In this paper, we propose a deep learning approach to recognize and classify handwritten characters of the Tamil language. The proposed system can be divided into five phases: expansion of the dataset and data augmentation with the help of Generative Adversarial Networks (GAN), preprocessing of the input image to reduce the noise, segmentation of the characters, feature extraction, and classification of the character done using Convolutional Neural Networks (CNN). We have achieved an accuracy of 94.03% and with data augmentation using GAN, an accuracy of 97% was achieved. The proposed system, along with the recognition of characters, also converts the image of the handwritten document into an editable word document or a PDF file.KeywordsDocument digitizationGenerative adversarial networkGANTamil character recognitionCNNDeep learningCharacter segmentation" @default.
- W4211203100 created "2022-02-13" @default.
- W4211203100 creator A5024211707 @default.
- W4211203100 creator A5060519728 @default.
- W4211203100 creator A5082021316 @default.
- W4211203100 creator A5088484794 @default.
- W4211203100 date "2022-01-01" @default.
- W4211203100 modified "2023-09-24" @default.
- W4211203100 title "Tamil Language Handwritten Document Digitization and Analysis of the Impact of Data Augmentation Using Generative Adversarial Networks (GANs) on the Accuracy of CNN Model" @default.
- W4211203100 cites W2095391233 @default.
- W4211203100 cites W2099878067 @default.
- W4211203100 cites W2120591376 @default.
- W4211203100 cites W2623608576 @default.
- W4211203100 cites W2785669629 @default.
- W4211203100 cites W2945169858 @default.
- W4211203100 cites W2963942586 @default.
- W4211203100 cites W2979811101 @default.
- W4211203100 cites W2983051129 @default.
- W4211203100 cites W3006206076 @default.
- W4211203100 cites W3020202994 @default.
- W4211203100 cites W3089007756 @default.
- W4211203100 doi "https://doi.org/10.1007/978-981-16-7996-4_12" @default.
- W4211203100 hasPublicationYear "2022" @default.
- W4211203100 type Work @default.
- W4211203100 citedByCount "0" @default.
- W4211203100 crossrefType "book-chapter" @default.
- W4211203100 hasAuthorship W4211203100A5024211707 @default.
- W4211203100 hasAuthorship W4211203100A5060519728 @default.
- W4211203100 hasAuthorship W4211203100A5082021316 @default.
- W4211203100 hasAuthorship W4211203100A5088484794 @default.
- W4211203100 hasConcept C115961682 @default.
- W4211203100 hasConcept C138885662 @default.
- W4211203100 hasConcept C140688305 @default.
- W4211203100 hasConcept C153180895 @default.
- W4211203100 hasConcept C154945302 @default.
- W4211203100 hasConcept C17649283 @default.
- W4211203100 hasConcept C204321447 @default.
- W4211203100 hasConcept C2524010 @default.
- W4211203100 hasConcept C2776401178 @default.
- W4211203100 hasConcept C2779308522 @default.
- W4211203100 hasConcept C2780861071 @default.
- W4211203100 hasConcept C2987247673 @default.
- W4211203100 hasConcept C31972630 @default.
- W4211203100 hasConcept C33923547 @default.
- W4211203100 hasConcept C34736171 @default.
- W4211203100 hasConcept C39890363 @default.
- W4211203100 hasConcept C41008148 @default.
- W4211203100 hasConcept C41895202 @default.
- W4211203100 hasConcept C44868376 @default.
- W4211203100 hasConcept C50644808 @default.
- W4211203100 hasConcept C52622490 @default.
- W4211203100 hasConcept C546480517 @default.
- W4211203100 hasConcept C81363708 @default.
- W4211203100 hasConcept C89600930 @default.
- W4211203100 hasConceptScore W4211203100C115961682 @default.
- W4211203100 hasConceptScore W4211203100C138885662 @default.
- W4211203100 hasConceptScore W4211203100C140688305 @default.
- W4211203100 hasConceptScore W4211203100C153180895 @default.
- W4211203100 hasConceptScore W4211203100C154945302 @default.
- W4211203100 hasConceptScore W4211203100C17649283 @default.
- W4211203100 hasConceptScore W4211203100C204321447 @default.
- W4211203100 hasConceptScore W4211203100C2524010 @default.
- W4211203100 hasConceptScore W4211203100C2776401178 @default.
- W4211203100 hasConceptScore W4211203100C2779308522 @default.
- W4211203100 hasConceptScore W4211203100C2780861071 @default.
- W4211203100 hasConceptScore W4211203100C2987247673 @default.
- W4211203100 hasConceptScore W4211203100C31972630 @default.
- W4211203100 hasConceptScore W4211203100C33923547 @default.
- W4211203100 hasConceptScore W4211203100C34736171 @default.
- W4211203100 hasConceptScore W4211203100C39890363 @default.
- W4211203100 hasConceptScore W4211203100C41008148 @default.
- W4211203100 hasConceptScore W4211203100C41895202 @default.
- W4211203100 hasConceptScore W4211203100C44868376 @default.
- W4211203100 hasConceptScore W4211203100C50644808 @default.
- W4211203100 hasConceptScore W4211203100C52622490 @default.
- W4211203100 hasConceptScore W4211203100C546480517 @default.
- W4211203100 hasConceptScore W4211203100C81363708 @default.
- W4211203100 hasConceptScore W4211203100C89600930 @default.
- W4211203100 hasLocation W42112031001 @default.
- W4211203100 hasOpenAccess W4211203100 @default.
- W4211203100 hasPrimaryLocation W42112031001 @default.
- W4211203100 hasRelatedWork W14486930 @default.
- W4211203100 hasRelatedWork W14868003 @default.
- W4211203100 hasRelatedWork W16331718 @default.
- W4211203100 hasRelatedWork W16589369 @default.
- W4211203100 hasRelatedWork W16722605 @default.
- W4211203100 hasRelatedWork W17658120 @default.
- W4211203100 hasRelatedWork W2698072 @default.
- W4211203100 hasRelatedWork W43929 @default.
- W4211203100 hasRelatedWork W5939791 @default.
- W4211203100 hasRelatedWork W7958345 @default.
- W4211203100 isParatext "false" @default.
- W4211203100 isRetracted "false" @default.
- W4211203100 workType "book-chapter" @default.