Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211209388> ?p ?o ?g. }
- W4211209388 endingPage "376" @default.
- W4211209388 startingPage "359" @default.
- W4211209388 abstract "Free Access References Jeffrey S. Parker, Jeffrey S. ParkerSearch for more papers by this authorRodney L. Anderson, Rodney L. AndersonSearch for more papers by this author Book Author(s):Jeffrey S. Parker, Jeffrey S. ParkerSearch for more papers by this authorRodney L. Anderson, Rodney L. AndersonSearch for more papers by this author First published: 03 June 2014 https://doi.org/10.1002/9781118855065.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat REFERENCES Apollo 11 Flight Plan, Tech. Rep. AS-506/CSM-107/LM-5, Flight Planning Branch, Flight Crew Support Division, NASA, Manned Spacecraft Center (now Johnson Space Center), Houston, Texas, July 1, 1969. Google Scholar J. S. Parker, R. L. Anderson, and A. Peterson, “A Survey of Ballistic Transfers to Low Lunar Orbit,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meetings held February 13–17, 2011, New Orleans, Louisiana (M. K. Jah, Y. Guo, A. L. Bowes, and P. C. Lai, eds.), Vol. 140, Paper AAS 11-277, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, pp. 2461– 2480, 2011. Google Scholar J. N. Goswami and M. Annadurai, “Chandrayaan-1: India's First Planetary Science Mission to the Moon,” Current Science; Special Section: Chandrayaan-1, Vol. 96, No. 4, pp. 486– 491, February 25, 2009. Web of Science®Google Scholar S. B. Broschart, M. J. Chung, S. J. Hatch, J. H. Ma, T. H. Sweetser, S. S. Weinstein-Weiss, and V. Angelopoulos, “Preliminary Trajectory Design for the ARTEMIS Lunar Mission,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held August 9–13, 2009, Pittsburgh, Pennsylvania (A. V. Rao, T. A. Lovell, F. K. Chan, and L. A. Cangahuala, eds.), Vol. 134, Paper AAS 09-382, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 2009. Google Scholar A. C. Clarke, Interplanetary Flight. Temple Press Books Ltd., London, 1950. Google Scholar R. W. Farquhar, “ Station-Keeping in the Vicinity of Collinear Libration Points with an Application to a Lunar Communications Problem,” Space Flight Mechanics, Vol. 11 of Science and Technology Series, American Astronautical Society, New York, pp. 519– 535, 1966. Google Scholar R. W. Farquhar, “Lunar Communications with Libration-Point Satellites,” Journal of Spacecraft and Rockets, Vol. 4, No. 10, pp. 1383– 1384, 1967. CrossrefWeb of Science®Google Scholar K. Hill, Autonomous Navigation in Libration Point Orbits. Ph.D. thesis, University of Colorado, Boulder, Colorado, 2007. Google Scholar K. Hill, G. H. Born, and M. W. Lo, “Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON) in Lunar Halo Orbits,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held August 7–11, 2005, South Lake Tahoe, California (B. G. Williams, L. A. D'Amario, K. C. Howell, and F. R. Hoots, eds.), Vol. 123, Paper AAS 05-400, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 2006. Google Scholar K. Hill, M. W. Lo, and G. H. Born, “Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON),” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held August 7–11, 2005, South Lake Tahoe, California (B. G. Williams, L. A. D'Amario, K. C. Howell, and F. R. Hoots, eds.), Vol. 123, Paper AAS 05-399, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 2006. Google Scholar K. Hill, J. S. Parker, G. H. Born, and N. Demandante, “A Lunar L2 Navigation, Communication, and Gravity Mission,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 2006, Keystone, Colorado, Paper AIAA 2006-6662, AIAA/AAS, 2006. Google Scholar J. S. Parker, R. L. Anderson, G. H. Born, and K. Fujimoto, Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) Between Geosynchronous and Lunar Halo Orbits, Tech. Rep. D-72688 (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 2012. Google Scholar B. Villac, C. Chow, M. Lo, G. Hintz, and Z. Nazari, “Dynamic Optimization of Multi-Spacecraft Relative Navigation Configurations in the Earth–Moon System,” Proceedings of the AAS George H. Born Symposium held May 13–14, 2010, Boulder, Colorado, AAS, 2010. Google Scholar V. R. Bond, S. J. Sponaugle, M. F. Fraietta, and S. F. Everett, “Cislunar Libration Point as a Transportation Node for Lunar Exploration,” Proceedings of the 1st AAS/AIAA Spaceflight Mechanics Meeting held February 11-13, 1991, Houston, Texas (J. K. Soldner, R. K. Misra, L. L. Sackett, and R. Holdaway, eds.), Vol. 75, Paper AAS 91-103, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 1991. Google Scholar L. A. D'Amario, Minimum Impulse Three-Body Trajectories, Tech. Rep. T-593, Massachusetts Institute of Technology, Boston, Massachusetts, June 1973. Google Scholar R. W. Farquhar, “Future Missions for Libration-point Satellites,” Astronautics & Aeronautics, pp. 52– 56, May 1969. Google Scholar R. W. Farquhar, The Utilization of Halo Orbits in Advanced Lunar Operations, Tech. Rep., NASA TN D-6365, Goddard Space Flight Center, Greenbelt, Maryland, July 1971. Google Scholar R. W. Farquhar and D. W. Dunham, “ Use of Libration-Point Orbits for Space Observatories,” Observatories in Earth Orbit and Beyond, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 391– 395, 1990. CrossrefGoogle Scholar C. A. Cross, “Orbits for an Extra-Terrestrial Observatory,” Journal of the British Interplanetary Society, Vol. 13, No. 4, pp. 204– 207, 1954. Google Scholar V. A. Egorov, Certain Problems of Moon Flight Dynamics, International Physical Index, Inc., New York, 1958. Google Scholar V. G. Fesenkov, “On the Possibility of Capture at Close Passages of Attracting Bodies,” Astronomicheskiy Zhurnal (Astronomical Journal of the Soviet Union), Vol. 23, No. 1, pp. 45– 48, 1946. Google Scholar T. H. Sweetser, “An Estimate of the Global Minimum DV Needed for Earth–Moon Transfer,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting held February 1991, Houston, Texas (J. K. Soldner, A. K. Misra, L. L. Sackett, and R. Holdaway, eds.), Vol. 75, Part I, Paper AAS 91-101, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 1991. Google Scholar H. J. Pernicka, D. P. Scarberry, S. M. Marsh, and T. H. Sweetser, “A Search for Low ΔV Earth-to-Moon Trajectories,” The Journal of the Astronautical Sciences, Vol. 43, No. 1, pp. 77– 88, January–March 1995. Web of Science®Google Scholar C. Conley, “Low Energy Transit Orbits in the Restricted Three Body Problem,” SIAM Journal of Applied Mathematics, Vol. 16, No. 4, pp. 732– 746, 1968. CrossrefWeb of Science®Google Scholar E. A. Belbruno, “Lunar Capture Orbits, a Method of Constructing Earth Moon Trajectories and the Lunar Gas Mission,” Proceedings of the 19th AIAA/DGLR/JSASS International Electric Propulsion Conference held May 1987, Colorado Springs, Colorado, Paper AIAA 87-1054, 1987. Google Scholar E. A. Belbruno, Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press, Princeton, New Jersey, 2004. Google Scholar E. A. Belbruno and J. P. Carrico, “Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 14–17, 2000, Denver, Colorado, Paper AIAA 2000-4142, AIAA/AAS, 2000. Google Scholar H. Yamakawa, On Earth–Moon Transfer Trajectory with Gravitational Capture. Ph.D. thesis, University of Tokyo, Tokyo, Japan, 1992. Google Scholar H. Yamakawa, J. Kawaguchi, N. Ishii, and H. Matsuo, “On Earth–Moon Transfer Trajectory with Gravitational Capture,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 1993, Paper AIAA 93-633, AIAA/AAS, 1993. Google Scholar E. A. Belbruno and J. K. Miller, “Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, pp. 770– 114, July–August 1993. CrossrefWeb of Science®Google Scholar V. V. Ivashkin, “On Trajectories of the Earth–Moon Flight of a Particle with Its Temporary Capture by the Moon,” Doklady Physics, Mechanics, Vol. 47, No. 11, pp. 825– 827, 2002. CrossrefCASWeb of Science®Google Scholar V. V. Ivashkin, “On the Earth-to-Moon Trajectories with Temporary Capture of a Particle by the Moon,” Proceedings of the 54th International Astronautical Congress held September 29–October 3, 2003, Bremen, Germany, Paper IAC-03-A.P.01), pp. 1– 9, 2003. Google Scholar V. V. Ivashkin, “On Particle's Trajectories of Moon-to-Earth Space Flights with the Gravitational Escape from the Lunar Attraction,” Doklady Physics, Mechanics, Vol. 49, No. 9, pp. 539– 542, 2004. CrossrefCASWeb of Science®Google Scholar V. V. Ivashkin, “On Trajectories for the Earth-to-Moon Flight with Capture by the Moon,” Proceedings of the International Lunar Conference 2003, Springfield, Virginia (S. M. Durst, C. T. Bohannan, C. G. Thomason, M. R. Cerney, and L. Yuen, eds.), Vol. 108, Paper AAS 03-723, Science and Technology Series, American Astronautical Society, pp. 157– 166, 2004. Google Scholar E. M. Bollt and J. D. Meiss, “Targeting Chaotic Orbits to the Moon Through Recurrence,” Physics Letters A, Vol. 204, pp. 373– 378, August 1995. CrossrefCASWeb of Science®Google Scholar C. G. Schroer and E. Ott, “Targeting in Hamiltonian Systems that have Mixed Regular/Chaotic Phase Spaces,” Chaos, Vol. 7, No. 4, pp. 512– 519, December 1997. CrossrefCASPubMedWeb of Science®Google Scholar W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Shoot the Moon,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting held January 23–26, 2000, Clearwater, Florida (C. A. Kluever, B. Neta, C. D. Hall, and J. M. Hanson, eds.), Vol. 105, part 2, Paper AAS 00-166, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, pp. 1017– 1030, 2000. Google Scholar W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Low Energy Transfers to the Moon,” Celestial Mechanics and Dynamical Astronomy, Vol. 81, No. 1, pp. 63– 73, September 2001. CrossrefWeb of Science®Google Scholar J. S. Parker and M. W. Lo, “Shoot the Moon 3D,” Astrodynamics 2005: Proceedings of the AAS/AIAA Astrodynamics Conference held August 7–10, 2005, South Lake Tahoe, California (B. G. Williams, L. A. D'Amario, K. C. Howell, and F.R. Hoots, eds.), Vol. 123, Paper AAS 05-383, Advances in Astronautical Sciences, American Astronautical Society, Univelt Inc., San Diego, California, pp. 2067– 2086, 2006. website: http://www.univelt.com. Google Scholar J. S. Parker and G. H. Born, “Modeling a Low-Energy Ballistic Lunar Transfer Using Dynamical Systems Theory,” Journal of Spacecraft and Rockets, Vol. 45, No. 6, pp. 1269– 1281, San Diego, California, November–December 2008. CrossrefWeb of Science®Google Scholar F. Topputo, M. Vasile, and F. Bernelli-Zazzera, “Interplanetary and Lunar Transfers Using Libration Points,” Proceedings of 18th International Symposium on Space Flight Dynamics held October 11–15, 2004, Munich, Germany, Paper SP-548, 2004. Google Scholar F. Topputo, M. Vasile, and F. Bernelli-Zazzera, “Low Energy Interplanetary Transfers Exploiting Invariant Manifolds of the Restricted Three-Body Problem,” The Journal of the Astronautical Sciences, Vol. 53, No. 4, pp. 353– 372, October–December 2005. Web of Science®Google Scholar K. C. Howell and M. Kakoi, “Transfers Between the Earth–Moon and Sun–Earth Systems using Manifolds and Transit Orbits,” Acta Astronautica, Vol. 59, No. 1–5, pp. 367– 380, IAC-05-C1.6.01, 2006. CrossrefWeb of Science®Google Scholar J. S. Parker, “Low-Energy Ballistic Transfers to Lunar Halo Orbits,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held 9–13 August 2009, Pittsburgh, Pennsylvania (A. V. Rao, T. A. Lovell, F. K. Chan, and L. A. Cangahuala, eds.), Vol. 135, Paper AAS 09-443, Advances in Astronautical Sciences, Astrodynamics 2009, San Diego, CA, AAS/AIAA, Univelt Inc., pp. 2339– 2358, 2010. Google Scholar J. S. Parker, “Families of Low-Energy Lunar Halo Transfers,” Proceedings of the 16th AAS/AIAA Spaceflight Mechanics Meetings held January 22–26, 2006, Tampa, Florida (S. R. Vadali, L. A. Cangahuala, J. P. W. Schumacher, and J. J. Guzman, eds.), Vol. 124, Paper AAS 06-132, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 2006. Google Scholar J. S. Parker, Low-Energy Ballistic Lunar Transfers. Ph.D. thesis, University of Colorado, Boulder, Colorado, 2007. Google Scholar J. S. Parker, “Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 2–5, 2010, Toronto, Ontario, Paper AIAA 2010-7963, AIAA/AAS, 2010. Google Scholar G. Mingotti, F. Topputo, and F. Bernelli-Zazzera, “Low-Energy, Low-Thrust Transfers to the Moon,” Celestial Mechanics and Dynamical Astronomy, Vol. 105, pp. 61– 74, 2009. CrossrefWeb of Science®Google Scholar G. Mingotti and F. Topputo, “Ways to the Moon: A Survey,” Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting held February 13–17, 2011, New Orleans, Louisiana, Paper AAS 11-283, American Astronautical Society, 2011. Google Scholar A. Ohndorf, B. Dachwald, and E. Gill, “Optimization of Low-Thurst Earth–Moon Transfers using Evolutionary Neurocontrol,” CEC'09 Proceedings of the Eleventh Conference on Congress on Evolutionary, 2009, Piscataway, New Jersey, IEEE, pp. 358– 364, 2009. Google Scholar M. Ozimek and K. Howell, “Low-Thrust Transfers in the Earth–Moon System Including Applications to Libration Point Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, pp. 533– 549, March–April 2010. CrossrefWeb of Science®Google Scholar J. Senent, C. Ocampo, and A. Capella, “Low-Thrust Variable-Specific-Impulse Transfers and Guidance to Unstable Periodic Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, pp. 280– 290, March–April 2005. CrossrefWeb of Science®Google Scholar A. Herman and B. Conway, “Optimal, Low-Thrust, Earth–Moon Orbit Transfers,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, pp. 141– 147, January–February 1998. CrossrefWeb of Science®Google Scholar E. M. Alessi, G. Gómez, and J. J. Masdemont, Low-Energy Transfers in the Earth–Moon System, Springer, New York, pp. 107– 114, 2010. Google Scholar G. Wawrzyniak and K. Howell, “Investigating the Design Space for Solar Sail Trajectories in the Earth–Moon System,” The Open Aerospace Engineering Journal, Vol. 4, pp. 11– 29, 2011. CrossrefGoogle Scholar L. Lozier, K. Galal, D. Folta, and M. Beckman, “Lunar Prospector Mission Design and Trajectory Support,” Proceedings of the AAS/GSFC International Symposium on Space Flight Dynamics held May 11–15, 1998, Greenbelt, Maryland (T. H. Stengle, ed.), Vol. 100, Part I, Paper AAS 98-323, Advances in Astronautical Sciences, American Astronauts Society and Goddard Space Flight Center, 1998. Google Scholar R. Godwin, ed., Apollo 11—The NASA Mission Reports, Vol. 1 of The Apogee Books Space Series. Collector's Guide Publishing Inc., Burlington, Ontario, Canada, 1999. Google Scholar NASA, “NASA National Space Science Data Center (NSSDC) Lunar and Planetary Home Page,” February 2012. http://nssdc.gsfc.nasa.gov/planetary/planets/moonpage.html. Google Scholar A. A. Siddiqi, Deep Space Chronicle, A Chronology of Deep Space and Planetary Probes, 1958-2000, NASA SP-2002-4524, Monographs in Aerospace History, Number 24, National Aeronautics and Space Administration, June 2002. Google Scholar R. W. Farquhar, D. Muhonen, and D. Richardson, “Mission Design for a Halo Orbiter of the Earth,” Journal of Spacecraft and Rockets, Vol. 14, No. 3, pp. 170– 177, March 1977. CrossrefWeb of Science®Google Scholar D. W. Dunham, “Contingency Plans for the ISEE-3 Libration Point Mission,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Paper AIAA 79-129, AIAA/AAS, 1979. Google Scholar “NASA's High Energy Astrophysics Science Archive Research Center,” web page, Goddard Space Flight CenterGreenbelt, Maryland, April 2012. http://heasarc.gsfc.nasa.gov/. Google Scholar “NASA's Polar, Wind and Geotail Missions,” web page, Goddard Space Flight Center, Greenbelt, Maryland, August 2011. http://pwg.gsfc.nasa.gov/. Google Scholar C. Simó, G. Gómez, J. Llibre, and R. Martinez, “Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds,” Second International Symposium on Flight Dynamics: Proceedings of the ESA Symposium held October 20–23, 1986, Darmstadt, Germany, Paper ESA SP-255, European Space Agency, pp. 65– 70, 1986. Google Scholar D. W. Dunham, S. J. Jen, C. E. Roberts, A. W. Seacord, P. J. Sharer, D. C. Folta, and D. P. Muhonen, “Transfer Trajectory Design for the SOHO Libration-Point Mission,” Proceedings of the 43rd Congress of the International Astronautical Federation held August 28–September 5, 1992, Washington, District of Columbia, Paper IAF 92-0066, 1992. Google Scholar R. M. Bonnet and F. Felici, “Overview of the SOHO Mission,” Advances in Space Research, Vol. 20, pp. 2207– 2218, 1997. CrossrefWeb of Science®Google Scholar G. Gómez, A. Jorba, J. Llibre, R. Martinez, J. Masdemont, and C. Simó, Dynamics and Mission Design near Libration Points, Vol. I–IV. World Scientific Publishing Co., Singapore, 2001. Google Scholar NASA, “Glenn Research Center Home,” Cleveland, Ohio, March 2007. http://www.nasa.gov/centers/glenn/. Google Scholar P. Murdin, “ACE (Advanced Composition Explorer),” Encyclopedia of Astronomy and Astrophysics, no. 4518, Goddard Space Flight Center, Greenbelt, Maryland, 2000. Google Scholar C. L. Bennett, “The Microwave Anisotropy Probe (MAP) Mission,” Bulletin of the American Astronomical Society, 189th AAS Meeting held January 1997, Toronto, Ontario, Vol. 28, Paper AAS 88.05, American Astronomical Society, p. 1391, 1996. CASGoogle Scholar K. C. Howell, B. T. Barden, and M. W. Lo, “Application of Dynamical Systems Theory to Trajectory Design for a Libration Point Mission,” Journal of the Astronautical Sciences, Vol. 45, No. 2, pp. 161– 178, April–June 1997. Web of Science®Google Scholar M. W. Lo, B. G. Williams, W. E. Bollman, D. S. Han, Y. S. Hahn, J. L. Bell, E. A. Hirst, R. A. Corwin, P. E. Hong, K. C. Howell, B. Barden, and R. Wilson, “Genesis Mission Design,” The Journal of the Astronautical Sciences, Vol. 49, No. 1, pp. 169– 184, January–March 2001. Web of Science®Google Scholar G. L. Pilbratt, T. Prusti, A. M. Heras, S. Leeks, A. P. Marston, and R. Vavrek, “Herschel Space Observatory,” Proceedings of the American Astronomical Society Meeting 204, Paper 01-81, 2004. Google Scholar “Herschel Mission Home Page,” web page, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, August 2011. http://herschel.jpl.nasa.gov/. Google Scholar “ESA Science and Technology,” web page, European Space Agency, August 2011. http://sci.esa.int/. Google Scholar “Wilkinson Microwave Anisotropy Probe,” web page, Goddard Space Flight Center, Greenbelt, Maryland, March 2007. http://map.gsfc.nasa.gov/. Google Scholar “Genesis: Search for Origins,” web page, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, March 2007. http://genesismission.jpl.nasa.gov/. Google Scholar J. P. Gardner, “The James Webb Space Telescope,” Large Telescopes and Virtual Observatory: Visions for the Future, Proceedings of the 25th meeting of the IAU held July 2003, Sydney, Australia, International Astronomical Union, 2003. Google Scholar C. Beichman, G. Gómez, M. W. Lo, J. Masdemont, and L. Romans, “Searching for Life with the Terrestrial Planet Finder: Lagrange Point Options for a Formation Flying Interferometer,” Advances in Space Research, Vol. 34, No. 3, pp. 637– 644, 2004. CrossrefWeb of Science®Google Scholar E. A. Belbruno and J. Miller, A Ballistic Lunar Capture Trajectory for the Japanese Spacecraft Hiten, Tech. Rep. IOM 312/90.4-1731-EAB, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1990. Google Scholar K. Uesugi, “Japanese first double Lunar swingby mission ‘HITEN’,” Acta Astronautica, Vol. 25, No. 7, pp. 347– 355, 1991. CrossrefWeb of Science®Google Scholar B. H. Foing and G. R. Racca, “The ESA SMART-1 Mission to the Moon with Solar Electric Propulsion,” Advances in Space Research, Vol. 23, No. 11, pp. 1865– 1870, 1999. CrossrefWeb of Science®Google Scholar R. B. Roncoli and K. K. Fujii, “Mission Design Overview for the Gravity Recovery and Interior Laboratory (GRAIL) Mission,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 2–5, 2010, Toronto, Ontario, Paper AIAA 2010-8383, AIAA/AAS, 2010. Google Scholar M. J. Chung, S. J. Hatch, J. A. Kangas, S. M. Long, R. B. Roncoli, and T. H. Sweetser, “Trans-Lunar Cruise Trajectory Design of GRAIL (Gravity Recovery and Interior Laboratory) Mission,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 2–5, 2010, Toronto, Ontario, Paper AIAA 2010-8384, AIAA/AAS, 2010. Google Scholar S. J. Hatch, R. B. Roncoli, and T. H. Sweetser, “GRAIL Trajectory Design: Lunar Orbit Insertion through Science,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference held August 2–5, 2010, Toronto, Ontario, Paper AIAA 2010-8385, AIAA/AAS, 2010. Google Scholar V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York, 1967. Google Scholar K. E. Williams, G. D. Lewis, R. S. Wilson, C. E. Helfrich, and C. L. Potts, “Genesis Earth Return: Refined Strategies and Flight Experience,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held January 23–27, 2005, Copper Mountain, Colorado (D. A. Vallado, M. J. Gabor, and P.N. Desai, eds.), Vol. 120, Paper AAS 05-116, Advances in Astronautical Sciences, AAS/AIAA, Univelt Inc., San Diego, California, 2005. Google Scholar A. S. Konopliv, S. W. Asmar, E. Carranza, W. L. Sjogren, and D. N. Yuan, “Recent Gravity Models as a Result of the Lunar Prospector Mission,” International Journal of Solar System Studies, Vol. 150, No. 1, pp. 1– 18, 2001. Web of Science®Google Scholar P. K. Seidelmann, V. K. Abalakin, M. Bursa, M. E. Davies, C. DeBergh, J. H. Lieske, J. Oberst, J. L. Simon, E. M. Standish, P. Stooke, and P. C. Thomas, “Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000,” Celestial Mechanics and Dynamical Astronomy, Vol. 82, pp. 83– 110, 2002. CrossrefWeb of Science®Google Scholar E. M. Standish, JPL Planetary and Lunar Ephemerides, DE405/LE405, Tech. Rep. IOM 312.F-98-048, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, August 1998. Google Scholar R. B. Roncoli, Lunar Constants and Models Document. JPL D-32296, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, September 23, 2005. Google Scholar P. K. Seidelmann, ed., Explanatory Supplement to the Astronomical Almanac. University Science Books, Sausalito, California, 1992. Google Scholar E. M. Standish, “Time Scales in the JPL and CfA Ephemerides,” Astronomy and Astrophysics, Vol. 336, pp. 381– 384, 1998. Web of Science®Google Scholar C. Ma, E. F. Arias, T. M. Eubanks, A. L. Fey, A. M. Gontier, C. S. Jacobs, O. J. Sovers, B. A. Archinal, and P. Chariot, “The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry,” The Astronomical Journal, Vol. 116, pp. 516– 546, July 1998. CrossrefWeb of Science®Google Scholar M. Feissel and F. Mignard, “The Adoption of ICRS on 1 January 1998: Meaning and Consequences,” Astronomy and Astrophysics, Vol. 331, letter to the Editor, pp. L33–L36, 1998. Web of Science®Google Scholar B. A. Archinal, M. F. A'Hearn, E. Bowell, A. Conrad, G. J. Consolmagno, R. Courtin, T. Fukushima, D. Hestroffer, J. L. Hilton, G. A. Krasinsky, G. Neumann, J. Oberst, P. K. Seidelmann, P. Stooke, D. J. Tholen, P. C. Thomas, and I. P. Williams, “Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009,” Celestial Mechanics and Dynamical Astronomy, Vol. 109, pp. 101– 135, 2011. CrossrefWeb of Science®Google Scholar D. A. Vallado, Fundamentals of Astrodynamics and Applications, Second Edition. Microcosm Press, El Segundo, California, and Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. Google Scholar G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross, “Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design,” Proceedings of the AIAA/AAS Astrodynamics Specialist Meeting held August 2001, Quebec City, Canada, Paper AIAA 01-301, AIAA/AAS, 2001. Google Scholar A. Miele, “Theorem of Image Trajectories in the Earth–Moon Space,” Astronautica Acta, Vol. 6, No. 51, pp. 225– 232, 1960. Google Scholar W. M. Folkner, J. G. Williams, and D. H. Boggs, The Planetary Network Progress Report 42-178, Tech. Rep., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, August 15, 2009. http://ipnpr.jpl.nasa.gov/progress_report/. Google Scholar J. S. Parker, K. E. Davis, and G. H. Born, “Chaining Periodic Three-Body Orbits in the Earth–Moon System,” ACTA Astronautica, Vol. 67, pp. 623– 638, 2010. CrossrefWeb of Science®Google Scholar G. H. Darwin, “Periodic Orbits,” Acta Mathematica, Vol. 21, pp. 99– 242, 1897. CrossrefGoogle Scholar G. H. Darwin, “Periodic Orbits,” Scientific Papers, Vol. 4, Cambridge University Press, Cambridge, Massachusetts, 1911. Google Scholar G. W. Hill, “Review of Darwin's Periodic Orbits,” Astronomical Journal, Vol. 18, No. 423, p. 120, 1898. Google Scholar H. C. Plummer, “On Oscillating Satellites–1,” Monthly Notices of the Royal Astronomical Society, Vol. 63, No. 8, pp. 436– 443, 1903. CrossrefGoogle Scholar F. R. Moulton, “Periodic Orbits,” Carnegie Institute of Washington Publications, no. 161, Washington, 1920. Google Scholar E. Strömgren, “Connaissance actuelle des orbites dans le problème des trios corps,” Copenhagen Observatory Publications, no. 100, 1935. Also Bulletin Astronomique Vol. 9, pp. 87– 130, 1935. Google Scholar R. A. Broucke, Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses, Tech. Rep. 32-1168, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1968. Google Scholar M. Hénon, “Exploration Numérique du Problème des Trois Corps, (I), Masses Egales, Orbites Périodiques,” Annales d'Astrophysique, Vol. 28, No. 3, pp. 499– 511, 1965. Web of Science®Google Scholar M. Hénon, “Exploration Numérique du Problème des Trois Corps, (II), Masses Egales, Orbites Périodiques,” Annales d'Astrophysique, Vol. 28, No. 6, pp. 992– 1007, 1965. Web of Science®Google Scholar M. Hénon, “Exploration Numérique du Problème des Trois Corps, (III), Masses Egales, Orbites Non Périodiques,” Bulletin Astronomique, Vol. 1, No. 1, pp. 57– 80, 1966. Google Scholar M. Hénon, “Exploration Numérique du Problème des Trois Corps, (IV), Masses Egales, Orbites Non Périodiques,” Bulletin Astronomique, Vol. 1, No. 2, pp. 49– 66, 1966. Google Scholar M. Hénon, “Numerical Exploration of the Restricted Problem. V., Hill's Case: Periodic Orbits and Their Stability,” Astronomy & Astrophysics, Vol. 1, pp. 223– 238, 1969. Web of Science®Google Scholar R. F. Arenstorf, “Existence of Periodic Solutions Passing Near Both Masses of the Restricted Three-Body Problem,” AIAA Journal, Vol. 1, p. 238, 1963. CrossrefGoogle Scholar C. L. Goudas, “Three Dimensional Periodic Orbits and their Stability,” Icarus, Vol. 2, pp. 1– 18, 1963. CrossrefWeb of Science®Google Scholar T. A. Bray and C. L. Goudas, “Doubly Symmetric Orbits about the Collinear Lagrange Points,” The Astronomical Journal, Vol. 72, No. 2, pp. 202– 213, March 1967. CrossrefWeb of Science®Google Scholar T. A. Bray and C." @default.
- W4211209388 created "2022-02-13" @default.
- W4211209388 date "2014-06-03" @default.
- W4211209388 modified "2023-10-17" @default.
- W4211209388 title "References" @default.
- W4211209388 cites W1517363766 @default.
- W4211209388 cites W1970101292 @default.
- W4211209388 cites W1970284489 @default.
- W4211209388 cites W1975440208 @default.
- W4211209388 cites W1976737994 @default.
- W4211209388 cites W1979327195 @default.
- W4211209388 cites W1982587838 @default.
- W4211209388 cites W1983843002 @default.
- W4211209388 cites W1989649006 @default.
- W4211209388 cites W1991702387 @default.
- W4211209388 cites W1994756273 @default.
- W4211209388 cites W1996519804 @default.
- W4211209388 cites W2006506210 @default.
- W4211209388 cites W2008148007 @default.
- W4211209388 cites W2009434414 @default.
- W4211209388 cites W2012226421 @default.
- W4211209388 cites W2012626948 @default.
- W4211209388 cites W2014086340 @default.
- W4211209388 cites W2017970933 @default.
- W4211209388 cites W2019692317 @default.
- W4211209388 cites W2022593334 @default.
- W4211209388 cites W2023523709 @default.
- W4211209388 cites W2023744588 @default.
- W4211209388 cites W2024938839 @default.
- W4211209388 cites W2031310007 @default.
- W4211209388 cites W2032325398 @default.
- W4211209388 cites W2032442674 @default.
- W4211209388 cites W2043599916 @default.
- W4211209388 cites W2046826540 @default.
- W4211209388 cites W2048541148 @default.
- W4211209388 cites W2050774978 @default.
- W4211209388 cites W2055220560 @default.
- W4211209388 cites W2060741657 @default.
- W4211209388 cites W2068887417 @default.
- W4211209388 cites W2070347409 @default.
- W4211209388 cites W2076540454 @default.
- W4211209388 cites W2077795365 @default.
- W4211209388 cites W2078298667 @default.
- W4211209388 cites W2079405987 @default.
- W4211209388 cites W2079476664 @default.
- W4211209388 cites W2082604467 @default.
- W4211209388 cites W2083705063 @default.
- W4211209388 cites W2086686342 @default.
- W4211209388 cites W2089607875 @default.
- W4211209388 cites W2089742024 @default.
- W4211209388 cites W2091236396 @default.
- W4211209388 cites W2092551790 @default.
- W4211209388 cites W2093972546 @default.
- W4211209388 cites W2094134806 @default.
- W4211209388 cites W2094303880 @default.
- W4211209388 cites W2094387564 @default.
- W4211209388 cites W2095945857 @default.
- W4211209388 cites W2119032654 @default.
- W4211209388 cites W2119830993 @default.
- W4211209388 cites W2126769755 @default.
- W4211209388 cites W2135250598 @default.
- W4211209388 cites W2137151998 @default.
- W4211209388 cites W2152447338 @default.
- W4211209388 cites W2158526047 @default.
- W4211209388 cites W2159494654 @default.
- W4211209388 cites W2162416865 @default.
- W4211209388 cites W2167309987 @default.
- W4211209388 cites W2264270938 @default.
- W4211209388 cites W2477244626 @default.
- W4211209388 cites W3104136855 @default.
- W4211209388 cites W4244353911 @default.
- W4211209388 cites W4247926633 @default.
- W4211209388 cites W4249475115 @default.
- W4211209388 cites W4292408320 @default.
- W4211209388 cites W4300506249 @default.
- W4211209388 cites W1973852474 @default.
- W4211209388 doi "https://doi.org/10.1002/9781118855065.refs" @default.
- W4211209388 hasPublicationYear "2014" @default.
- W4211209388 type Work @default.
- W4211209388 citedByCount "0" @default.
- W4211209388 crossrefType "other" @default.
- W4211209388 hasBestOaLocation W42112093881 @default.
- W4211209388 hasConcept C41008148 @default.
- W4211209388 hasConceptScore W4211209388C41008148 @default.
- W4211209388 hasLocation W42112093881 @default.
- W4211209388 hasOpenAccess W4211209388 @default.
- W4211209388 hasPrimaryLocation W42112093881 @default.
- W4211209388 hasRelatedWork W1596801655 @default.
- W4211209388 hasRelatedWork W2130043461 @default.
- W4211209388 hasRelatedWork W2350741829 @default.
- W4211209388 hasRelatedWork W2358668433 @default.
- W4211209388 hasRelatedWork W2376932109 @default.
- W4211209388 hasRelatedWork W2382290278 @default.
- W4211209388 hasRelatedWork W2390279801 @default.
- W4211209388 hasRelatedWork W2748952813 @default.
- W4211209388 hasRelatedWork W2899084033 @default.
- W4211209388 hasRelatedWork W2530322880 @default.
- W4211209388 isParatext "false" @default.