Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211220123> ?p ?o ?g. }
- W4211220123 abstract "For theories that exhibit second-order phase transition, we conjecture that the large-order asymptotic behavior of the strong-coupling (high-temperature) series expansion takes the form ${ensuremath{sigma}}^{n}{n}^{b}$ where $b$ is a universal parameter. The associated critical exponent is then given by $b+1$. The series itself can be approximated by the hypergeometric approximants ${_{p}F}_{pensuremath{-}1}$ which can mimic the same large-order behavior of the given series. Near the tip of the branch cut, the hypergeometric function ${_{p}F}_{pensuremath{-}1}$ has a power-law behavior from which the critical exponent and critical coupling can be extracted. We test the conjecture in this work for the perturbation series of the ground state energy of the Yang-Lee model as a strong-coupling form of the $mathcal{P}mathcal{T}$-symmetric $i{ensuremath{phi}}^{3}$ theory and the high-temperature expansion within the Ising model. From the known $b$ parameter for the Yang-Lee model, we obtain the exact critical exponents, which reflects the universality of $b$. Very accurate prediction for $b$ has been obtained from the many orders available for the high-temperature series expansion of the Ising model, which in turn predicts accurate critical exponents. Apart from critical exponents, the hypergeometric approximants for the Yang-Lee model show almost exact predictions for the ground state energy from low orders of perturbation series as input." @default.
- W4211220123 created "2022-02-13" @default.
- W4211220123 creator A5032431706 @default.
- W4211220123 date "2022-02-10" @default.
- W4211220123 modified "2023-10-18" @default.
- W4211220123 title "Universal large-order asymptotic behavior of the strong-coupling and high-temperature series expansions" @default.
- W4211220123 cites W1480314546 @default.
- W4211220123 cites W1599623497 @default.
- W4211220123 cites W1804678992 @default.
- W4211220123 cites W1808256876 @default.
- W4211220123 cites W1846684293 @default.
- W4211220123 cites W1897959463 @default.
- W4211220123 cites W1968071935 @default.
- W4211220123 cites W1983818053 @default.
- W4211220123 cites W1985143635 @default.
- W4211220123 cites W1997875197 @default.
- W4211220123 cites W1998032301 @default.
- W4211220123 cites W2000480061 @default.
- W4211220123 cites W2002386094 @default.
- W4211220123 cites W2005782382 @default.
- W4211220123 cites W2009768419 @default.
- W4211220123 cites W2013215129 @default.
- W4211220123 cites W2019181345 @default.
- W4211220123 cites W2027736057 @default.
- W4211220123 cites W2029302490 @default.
- W4211220123 cites W2043917088 @default.
- W4211220123 cites W2051235662 @default.
- W4211220123 cites W2066735347 @default.
- W4211220123 cites W2067123857 @default.
- W4211220123 cites W2071200725 @default.
- W4211220123 cites W2074670256 @default.
- W4211220123 cites W2075712093 @default.
- W4211220123 cites W2086031744 @default.
- W4211220123 cites W2090018686 @default.
- W4211220123 cites W2108600748 @default.
- W4211220123 cites W2121111409 @default.
- W4211220123 cites W2152366295 @default.
- W4211220123 cites W2336268572 @default.
- W4211220123 cites W2336564914 @default.
- W4211220123 cites W2546567487 @default.
- W4211220123 cites W2571106243 @default.
- W4211220123 cites W2582936280 @default.
- W4211220123 cites W2615253930 @default.
- W4211220123 cites W2667371835 @default.
- W4211220123 cites W2738158812 @default.
- W4211220123 cites W2788159643 @default.
- W4211220123 cites W2902264047 @default.
- W4211220123 cites W2963958008 @default.
- W4211220123 cites W2993480406 @default.
- W4211220123 cites W3005634446 @default.
- W4211220123 cites W3016866953 @default.
- W4211220123 cites W3045864679 @default.
- W4211220123 cites W3094022050 @default.
- W4211220123 cites W3098519341 @default.
- W4211220123 cites W3099684800 @default.
- W4211220123 cites W3100679222 @default.
- W4211220123 cites W3102853695 @default.
- W4211220123 cites W3104925330 @default.
- W4211220123 cites W3105343993 @default.
- W4211220123 cites W3105354310 @default.
- W4211220123 cites W3121260043 @default.
- W4211220123 cites W3124740618 @default.
- W4211220123 cites W3125014157 @default.
- W4211220123 cites W320506360 @default.
- W4211220123 cites W3211055271 @default.
- W4211220123 cites W4212984156 @default.
- W4211220123 cites W422423898 @default.
- W4211220123 cites W4234499892 @default.
- W4211220123 cites W4239702435 @default.
- W4211220123 cites W4246964793 @default.
- W4211220123 doi "https://doi.org/10.1103/physrevd.105.045004" @default.
- W4211220123 hasPublicationYear "2022" @default.
- W4211220123 type Work @default.
- W4211220123 citedByCount "3" @default.
- W4211220123 countsByYear W42112201232023 @default.
- W4211220123 crossrefType "journal-article" @default.
- W4211220123 hasAuthorship W4211220123A5032431706 @default.
- W4211220123 hasBestOaLocation W42112201232 @default.
- W4211220123 hasConcept C10138342 @default.
- W4211220123 hasConcept C114614502 @default.
- W4211220123 hasConcept C11683690 @default.
- W4211220123 hasConcept C121332964 @default.
- W4211220123 hasConcept C134306372 @default.
- W4211220123 hasConcept C138885662 @default.
- W4211220123 hasConcept C143724316 @default.
- W4211220123 hasConcept C149288129 @default.
- W4211220123 hasConcept C151730666 @default.
- W4211220123 hasConcept C158241908 @default.
- W4211220123 hasConcept C162324750 @default.
- W4211220123 hasConcept C164154869 @default.
- W4211220123 hasConcept C182306322 @default.
- W4211220123 hasConcept C186080144 @default.
- W4211220123 hasConcept C197320386 @default.
- W4211220123 hasConcept C2780388253 @default.
- W4211220123 hasConcept C2780990831 @default.
- W4211220123 hasConcept C33923547 @default.
- W4211220123 hasConcept C37914503 @default.
- W4211220123 hasConcept C41895202 @default.
- W4211220123 hasConcept C51329190 @default.
- W4211220123 hasConcept C62520636 @default.