Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211225719> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4211225719 abstract "Melanoma is categorized as an extremely lethal type of skin cancer. Its earlier and timely diagnosis is the only solution to minimize the fatality rate in patients. Various computer aided diagnosis (CAD) systems have been designed which show great advancement in lesion segmentation and classification. The Model Blending approach is the ensemble of multiple Convolutional Neural networks (CNNs) which results into lower variance in their output predictions, thus reducing the generalization error by many folds. This proposed study is designed to provide a fully automated deep learning based melanoma detection framework using multiple, standard skin lesion databases including PH<sup>2</sup>, Med-Node and ISIC-2020. Extensive pre-processing on dermoscopic images is performed to remove useless artefacts and preserve illumination effects. Semantic segmentation is carried out using a Fully Convolutional Network (FCN-8), followed by image augmentation methods. An ensemble of deep ResNet-50 and Inception-V3 has been designed to perform binary classification (benign or melanoma) of lesion images. The segmentation approach exhibited satisfactory performance with an accuracy score of 94%, Dice coefficient 88% and Jaccard similarity coefficient 89% In the classification task, the pre-trained CNN model successfully recorded an average accuracy of 93.4%, specificity 96.5%, ROC-AUC 98.8% and average precision 89.5% on augmented dermoscopy images. The classification results of the model are deeply analyzed and compared with other ultra-modern melanoma diagnosis frameworks which indicate that our proposed model successfully achieved better segmentation and classification results. This ensemble approach is fully practicable and can be deployed by dermatologists as their medical assistant/guide." @default.
- W4211225719 created "2022-02-13" @default.
- W4211225719 creator A5003828287 @default.
- W4211225719 creator A5030892195 @default.
- W4211225719 creator A5033634358 @default.
- W4211225719 date "2021-12-01" @default.
- W4211225719 modified "2023-10-17" @default.
- W4211225719 title "An Automated Deep Learning based Ensemble Approach for Malignant Melanoma Detection using Dermoscopy Images" @default.
- W4211225719 cites W1509451745 @default.
- W4211225719 cites W2164273268 @default.
- W4211225719 cites W2180648740 @default.
- W4211225719 cites W2551757037 @default.
- W4211225719 cites W2593586875 @default.
- W4211225719 cites W2611248927 @default.
- W4211225719 cites W2770842918 @default.
- W4211225719 cites W2780611063 @default.
- W4211225719 cites W2782614058 @default.
- W4211225719 cites W2810305204 @default.
- W4211225719 cites W2886930894 @default.
- W4211225719 cites W2903641499 @default.
- W4211225719 cites W2907688358 @default.
- W4211225719 cites W2909445515 @default.
- W4211225719 cites W2910318609 @default.
- W4211225719 cites W2911653980 @default.
- W4211225719 cites W2956391471 @default.
- W4211225719 cites W2963059730 @default.
- W4211225719 cites W3014613513 @default.
- W4211225719 cites W3037272622 @default.
- W4211225719 cites W3089813167 @default.
- W4211225719 cites W3091392488 @default.
- W4211225719 cites W3092884672 @default.
- W4211225719 cites W3105311500 @default.
- W4211225719 cites W3114688163 @default.
- W4211225719 cites W3130244078 @default.
- W4211225719 cites W3160890506 @default.
- W4211225719 cites W3180110917 @default.
- W4211225719 cites W3180902710 @default.
- W4211225719 doi "https://doi.org/10.1109/fit53504.2021.00046" @default.
- W4211225719 hasPublicationYear "2021" @default.
- W4211225719 type Work @default.
- W4211225719 citedByCount "13" @default.
- W4211225719 countsByYear W42112257192022 @default.
- W4211225719 countsByYear W42112257192023 @default.
- W4211225719 crossrefType "proceedings-article" @default.
- W4211225719 hasAuthorship W4211225719A5003828287 @default.
- W4211225719 hasAuthorship W4211225719A5030892195 @default.
- W4211225719 hasAuthorship W4211225719A5033634358 @default.
- W4211225719 hasConcept C108583219 @default.
- W4211225719 hasConcept C115961682 @default.
- W4211225719 hasConcept C119857082 @default.
- W4211225719 hasConcept C12267149 @default.
- W4211225719 hasConcept C124504099 @default.
- W4211225719 hasConcept C153180895 @default.
- W4211225719 hasConcept C154945302 @default.
- W4211225719 hasConcept C163864269 @default.
- W4211225719 hasConcept C163892561 @default.
- W4211225719 hasConcept C203519979 @default.
- W4211225719 hasConcept C41008148 @default.
- W4211225719 hasConcept C45942800 @default.
- W4211225719 hasConcept C66905080 @default.
- W4211225719 hasConcept C75294576 @default.
- W4211225719 hasConcept C81363708 @default.
- W4211225719 hasConcept C89600930 @default.
- W4211225719 hasConceptScore W4211225719C108583219 @default.
- W4211225719 hasConceptScore W4211225719C115961682 @default.
- W4211225719 hasConceptScore W4211225719C119857082 @default.
- W4211225719 hasConceptScore W4211225719C12267149 @default.
- W4211225719 hasConceptScore W4211225719C124504099 @default.
- W4211225719 hasConceptScore W4211225719C153180895 @default.
- W4211225719 hasConceptScore W4211225719C154945302 @default.
- W4211225719 hasConceptScore W4211225719C163864269 @default.
- W4211225719 hasConceptScore W4211225719C163892561 @default.
- W4211225719 hasConceptScore W4211225719C203519979 @default.
- W4211225719 hasConceptScore W4211225719C41008148 @default.
- W4211225719 hasConceptScore W4211225719C45942800 @default.
- W4211225719 hasConceptScore W4211225719C66905080 @default.
- W4211225719 hasConceptScore W4211225719C75294576 @default.
- W4211225719 hasConceptScore W4211225719C81363708 @default.
- W4211225719 hasConceptScore W4211225719C89600930 @default.
- W4211225719 hasLocation W42112257191 @default.
- W4211225719 hasOpenAccess W4211225719 @default.
- W4211225719 hasPrimaryLocation W42112257191 @default.
- W4211225719 hasRelatedWork W2766422710 @default.
- W4211225719 hasRelatedWork W2914580601 @default.
- W4211225719 hasRelatedWork W2953570019 @default.
- W4211225719 hasRelatedWork W3012828488 @default.
- W4211225719 hasRelatedWork W3093926553 @default.
- W4211225719 hasRelatedWork W3116883888 @default.
- W4211225719 hasRelatedWork W4223526259 @default.
- W4211225719 hasRelatedWork W4280645644 @default.
- W4211225719 hasRelatedWork W4287631720 @default.
- W4211225719 hasRelatedWork W4367019122 @default.
- W4211225719 isParatext "false" @default.
- W4211225719 isRetracted "false" @default.
- W4211225719 workType "article" @default.