Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211227762> ?p ?o ?g. }
- W4211227762 endingPage "164" @default.
- W4211227762 startingPage "137" @default.
- W4211227762 abstract "Advancing radiology towards quantitative interpretation relies on innovating with image processing algorithms for context navigation (e.g., “Does this image contain a tumor?”), object localization (”Where is the spleen located?”), and segmentation (e.g., “Which voxels in the image belong to the hippocampus?”). In this chapter, we focus on the most invasive of these questions – segmentation. An algorithm that yields a segmentation of a medical image assigns each voxel in a target medical image to an object class (either deterministically or probabilistically). The results of a segmentation process can be used to address a wide variety of clinical problems from volumetry and shape analysis to radiomics and image-guided interventions. Historically, human efforts for capturing medical image segmentations (e.g., labelers or, herein, raters) have been remarkably resource intensive and subject to high degrees of interrater variability. Hence, medical images paired with their segmentations (so-called maps, charts, or, herein, atlases) are treasured resources. Creating approaches to learn algorithms based on an available and/or feasible collection of atlases has been at the forefront of medical image computing research for the better part of a quarter century. An intuitive and effective family of methods for using existing atlases to create a new algorithm is known as multiatlas segmentation. The core idea underlying multiatlas segmentation is that differences in anatomy as seen through medical images are relatively small and can be compensated through image registration. Hence, the segmentation of an atlas registered to an unseen target represents a reasonable estimation of the true segmentation for that target. When the registration process is repeated for multiple atlases, one would achieve multiple reasonable estimates of a segmentation. The field of multiatlas segmentation centers on capturing and resolving the uncertainty associated with multiple segmentation estimates and optimizing the preprocessing, registration, information integration, and postprocessing steps needed to address complexities of specific anatomies, imaging modalities, and clinical context. The intent of this chapter is to provide historical context for interpretation of modern multiatlas segmentation methods while offering a consistent notation to compare and contrast the evolving literature. Notably, while we highlight salient innovations both from practical and theoretical perspectives, this chapter does not seek to provide a comprehensive literature review." @default.
- W4211227762 created "2022-02-13" @default.
- W4211227762 creator A5012797975 @default.
- W4211227762 creator A5067191302 @default.
- W4211227762 creator A5075735203 @default.
- W4211227762 creator A5091363743 @default.
- W4211227762 date "2020-01-01" @default.
- W4211227762 modified "2023-09-26" @default.
- W4211227762 title "Multiatlas segmentation" @default.
- W4211227762 cites W1489942343 @default.
- W4211227762 cites W1667869507 @default.
- W4211227762 cites W1680164276 @default.
- W4211227762 cites W1891773028 @default.
- W4211227762 cites W1954335072 @default.
- W4211227762 cites W1970928383 @default.
- W4211227762 cites W1979588596 @default.
- W4211227762 cites W1988790447 @default.
- W4211227762 cites W1992496678 @default.
- W4211227762 cites W2000732749 @default.
- W4211227762 cites W2004293194 @default.
- W4211227762 cites W2004691878 @default.
- W4211227762 cites W2010587020 @default.
- W4211227762 cites W2015111196 @default.
- W4211227762 cites W2016974693 @default.
- W4211227762 cites W2018662705 @default.
- W4211227762 cites W2019522723 @default.
- W4211227762 cites W2032377318 @default.
- W4211227762 cites W2035188186 @default.
- W4211227762 cites W2044069866 @default.
- W4211227762 cites W2045256826 @default.
- W4211227762 cites W2047896044 @default.
- W4211227762 cites W2048515486 @default.
- W4211227762 cites W2049247209 @default.
- W4211227762 cites W2050088537 @default.
- W4211227762 cites W2053383165 @default.
- W4211227762 cites W2053984362 @default.
- W4211227762 cites W2057332541 @default.
- W4211227762 cites W2066828176 @default.
- W4211227762 cites W2066839705 @default.
- W4211227762 cites W2079810663 @default.
- W4211227762 cites W2080822231 @default.
- W4211227762 cites W2081275837 @default.
- W4211227762 cites W2085091083 @default.
- W4211227762 cites W2086254382 @default.
- W4211227762 cites W2093215004 @default.
- W4211227762 cites W2094735076 @default.
- W4211227762 cites W2100209835 @default.
- W4211227762 cites W2102595307 @default.
- W4211227762 cites W2107956652 @default.
- W4211227762 cites W2112457078 @default.
- W4211227762 cites W2113576511 @default.
- W4211227762 cites W2114479121 @default.
- W4211227762 cites W2115167851 @default.
- W4211227762 cites W2116649573 @default.
- W4211227762 cites W2117340355 @default.
- W4211227762 cites W2118020555 @default.
- W4211227762 cites W2118386984 @default.
- W4211227762 cites W2121185215 @default.
- W4211227762 cites W2123983635 @default.
- W4211227762 cites W2124984765 @default.
- W4211227762 cites W2125504089 @default.
- W4211227762 cites W2125556098 @default.
- W4211227762 cites W2128806031 @default.
- W4211227762 cites W2128901007 @default.
- W4211227762 cites W2129460390 @default.
- W4211227762 cites W2133584444 @default.
- W4211227762 cites W2136148445 @default.
- W4211227762 cites W2136573752 @default.
- W4211227762 cites W2140139548 @default.
- W4211227762 cites W2140475355 @default.
- W4211227762 cites W2140775860 @default.
- W4211227762 cites W2141487450 @default.
- W4211227762 cites W2141796362 @default.
- W4211227762 cites W2142456468 @default.
- W4211227762 cites W2142484032 @default.
- W4211227762 cites W2142853128 @default.
- W4211227762 cites W2143781397 @default.
- W4211227762 cites W2143977263 @default.
- W4211227762 cites W2144132747 @default.
- W4211227762 cites W2145674057 @default.
- W4211227762 cites W2145995502 @default.
- W4211227762 cites W2146417264 @default.
- W4211227762 cites W2148157540 @default.
- W4211227762 cites W2148347694 @default.
- W4211227762 cites W2148726987 @default.
- W4211227762 cites W2151130155 @default.
- W4211227762 cites W2153798798 @default.
- W4211227762 cites W2154281919 @default.
- W4211227762 cites W2154906251 @default.
- W4211227762 cites W2158514158 @default.
- W4211227762 cites W2160153825 @default.
- W4211227762 cites W2162140684 @default.
- W4211227762 cites W2163595993 @default.
- W4211227762 cites W2164971516 @default.
- W4211227762 cites W2168485464 @default.
- W4211227762 cites W2169366712 @default.
- W4211227762 cites W2346463831 @default.
- W4211227762 cites W2538808881 @default.