Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211229275> ?p ?o ?g. }
- W4211229275 abstract "The spread of enterprise credit risk in the supply chain may lead to large-scale bankruptcy and credit crises, which are related to national economic and social stability and financial system security. Therefore, enterprise credit risk in the supply chain context is not only a concern for banking financial institutions, credit rating agencies and enterprise managers but also the focus of governments. This article develops a DTE-DSA (decision tree [DT] ensemble model using the differential sampling rate, Synthetic Minority Oversampling Technique [SMOTE] and AdaBoost) prediction framework integrating supply chain information to predict enterprise credit risk. The empirical test shows that using supply chain information can significantly improve the prediction score. The DTE-DSA model has the best prediction effect in dealing with class imbalance problems. Compared with single classifier models—such as logistic regression, k-nearest neighbours, support vector machine, DT and DT using the SMOTE—as well as ensemble models—such as extremely randomized trees, random forest, rotation forest, extreme gradient boosting, gradient boosting DT and DT ensemble model using AdaBoost—the DTE-DSA model not only has the best prediction score but also has a more stable performance. The comprehensive use of supply chain information and the DTE-DSA model can result in the highest prediction score, with an area under the curve of 0.9016 and a Kolmogorov–Smirnov statistic of 0.7369. Further analysis of the variables of importance enhances the interpretability of the model and obtains relevant management insights." @default.
- W4211229275 created "2022-02-13" @default.
- W4211229275 creator A5006875674 @default.
- W4211229275 creator A5058795894 @default.
- W4211229275 creator A5077136210 @default.
- W4211229275 creator A5088644141 @default.
- W4211229275 date "2022-02-08" @default.
- W4211229275 modified "2023-10-16" @default.
- W4211229275 title "Enterprise credit risk prediction using supply chain information: A decision tree ensemble model based on the differential sampling rate, Synthetic Minority Oversampling Technique and AdaBoost" @default.
- W4211229275 cites W1971547695 @default.
- W4211229275 cites W1980770954 @default.
- W4211229275 cites W1994824189 @default.
- W4211229275 cites W2004473119 @default.
- W4211229275 cites W2013285825 @default.
- W4211229275 cites W2020848494 @default.
- W4211229275 cites W2029864452 @default.
- W4211229275 cites W2046792933 @default.
- W4211229275 cites W2048945213 @default.
- W4211229275 cites W2052611008 @default.
- W4211229275 cites W2079402140 @default.
- W4211229275 cites W2085083199 @default.
- W4211229275 cites W2093064636 @default.
- W4211229275 cites W2095148636 @default.
- W4211229275 cites W2124532504 @default.
- W4211229275 cites W2130508343 @default.
- W4211229275 cites W2137334813 @default.
- W4211229275 cites W2141640905 @default.
- W4211229275 cites W2148143831 @default.
- W4211229275 cites W2235716330 @default.
- W4211229275 cites W2273893358 @default.
- W4211229275 cites W2312738857 @default.
- W4211229275 cites W2319270064 @default.
- W4211229275 cites W2403788329 @default.
- W4211229275 cites W2520172106 @default.
- W4211229275 cites W2548125779 @default.
- W4211229275 cites W2554391432 @default.
- W4211229275 cites W2587091557 @default.
- W4211229275 cites W2588176548 @default.
- W4211229275 cites W2588213976 @default.
- W4211229275 cites W2588836480 @default.
- W4211229275 cites W2605910048 @default.
- W4211229275 cites W2606916050 @default.
- W4211229275 cites W2619951045 @default.
- W4211229275 cites W2761075141 @default.
- W4211229275 cites W2761700016 @default.
- W4211229275 cites W2782858724 @default.
- W4211229275 cites W2789282145 @default.
- W4211229275 cites W2800788706 @default.
- W4211229275 cites W2803287881 @default.
- W4211229275 cites W2882730251 @default.
- W4211229275 cites W2907709934 @default.
- W4211229275 cites W2911450871 @default.
- W4211229275 cites W2954085822 @default.
- W4211229275 cites W2959466452 @default.
- W4211229275 cites W2962981269 @default.
- W4211229275 cites W2978649701 @default.
- W4211229275 cites W2984042427 @default.
- W4211229275 cites W2995887271 @default.
- W4211229275 cites W3003608897 @default.
- W4211229275 cites W3029293622 @default.
- W4211229275 cites W3044259360 @default.
- W4211229275 cites W3082138874 @default.
- W4211229275 cites W3095606640 @default.
- W4211229275 cites W3118510645 @default.
- W4211229275 cites W3121638446 @default.
- W4211229275 cites W3122454478 @default.
- W4211229275 cites W3122906726 @default.
- W4211229275 cites W3135436766 @default.
- W4211229275 cites W3163710317 @default.
- W4211229275 cites W3173725123 @default.
- W4211229275 cites W3174994917 @default.
- W4211229275 cites W3176623296 @default.
- W4211229275 doi "https://doi.org/10.1111/exsy.12953" @default.
- W4211229275 hasPublicationYear "2022" @default.
- W4211229275 type Work @default.
- W4211229275 citedByCount "5" @default.
- W4211229275 countsByYear W42112292752022 @default.
- W4211229275 countsByYear W42112292752023 @default.
- W4211229275 crossrefType "journal-article" @default.
- W4211229275 hasAuthorship W4211229275A5006875674 @default.
- W4211229275 hasAuthorship W4211229275A5058795894 @default.
- W4211229275 hasAuthorship W4211229275A5077136210 @default.
- W4211229275 hasAuthorship W4211229275A5088644141 @default.
- W4211229275 hasConcept C10138342 @default.
- W4211229275 hasConcept C108713360 @default.
- W4211229275 hasConcept C119857082 @default.
- W4211229275 hasConcept C119898033 @default.
- W4211229275 hasConcept C12267149 @default.
- W4211229275 hasConcept C141404830 @default.
- W4211229275 hasConcept C144133560 @default.
- W4211229275 hasConcept C149782125 @default.
- W4211229275 hasConcept C154945302 @default.
- W4211229275 hasConcept C162324750 @default.
- W4211229275 hasConcept C162853370 @default.
- W4211229275 hasConcept C169258074 @default.
- W4211229275 hasConcept C178350159 @default.
- W4211229275 hasConcept C197323446 @default.
- W4211229275 hasConcept C2776257435 @default.
- W4211229275 hasConcept C31258907 @default.
- W4211229275 hasConcept C41008148 @default.