Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211239478> ?p ?o ?g. }
- W4211239478 endingPage "362" @default.
- W4211239478 startingPage "355" @default.
- W4211239478 abstract "Free Access Bibliography Mikhail Panfilov, Mikhail Panfilov Institute Elie Cartan – University of Lorraine, CNRS bd. Aguillettes, Vandoeuvre-lés-Nancy, BP 7023954506 FranceSearch for more papers by this author Book Author(s):Mikhail Panfilov, Mikhail Panfilov Institute Elie Cartan – University of Lorraine, CNRS bd. Aguillettes, Vandoeuvre-lés-Nancy, BP 7023954506 FranceSearch for more papers by this author First published: 05 November 2018 https://doi.org/10.1002/9783527806577.biblio AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abadpour, A. (2008). Asymptotic analysis of the Riemann problem for compositional multiphase flow in porous media and applications to oil reservoirs. PhD thesis. Nancy: INPL. Abadpour, A. and Panfilov, M. (2009). Method of negative saturations for modeling two-phase compositional flow with oversaturated zones. Transp. Porous Media 79 (2): 197– 214. Abadpour, A. and Panfilov, M. (2010). Asymptotic decomposed model of two-phase compositional flow in porous media: analytical front tracking method for Riemann problem. Transp. Porous Media 82 (3): 547– 565. Adler, P. (1990). Porous Media: Geometry and Transport. New York: Butterworth-Heinemann. Alexandrikova, T.A. and Galanin, M.P. (2003). Nonlinear Monotonization of K.I. Babenko scheme for the numerical soltion of the quai-linear advection equation. Preprint, Institute of Applied Mathematcis. Russian Academy of Sciences (in Russian). Baranyi, J. (2010). Modelling and parameter estimation of bacterial growth with distributed lag time. PhD thesis. Hungary: University of Szeged. Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M. (1990). Theory of Fluid Flows Through Natural Rocks. Kluwer Academic Publishers. Bear, J. (1972). Dynamics of Fluids in Porous Media. Courier Corporation. Bedrikovetsky, P. (1993). Mathematical Theory of Oil and Gas Recovery. Dordrecht: Kluwer Academic Publishers. Benney, D.J. (1966). Long waves on liquid films. J. Math. Phys. (Cambridge, Mass.) 45: 150– 155. Boait, F.C., White, N.J., Bickle, M.J. et al. (2012). Spatial and temporal evolution of injected CO 2 at the Sleipner Field, North Sea. J. Geophys. Res.: Solid Earth 117 (B3): 1978– 2012. Boone, D.R. (2000). Biological formation and consumption of methane. In: Atmospheric Methane: Its Role in the Global Environment (ed. M.A.K. Khalil), 43– 59. New York: Springer-Verlag. Bonn, D., Eggers, J., Indekeu, J. et al. (2009). Wetting and spreading. Rev. Mod. Phys. 81: 739– 805. Bonnerot, R. and Jamet, J. (1981). A conservative finite element method for one-dimensional Stefan problems with appearing and disappearing phases. J. Comput. Phys. 41 (2): 357– 388. Bourgeat, A., Jurak, M., and Smai, F. (2009). Two-phase, partially miqcible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository. Comput. Geosci. 13: 29– 42. Brooks, R.H. and Corey, A.T. (1964). Hydraulic properties of porous media. Hydrology Papers, Colorado State University. Brusilovsky, A.I. (2002). Phase Transition Under Exploitation of Oil and Gas Reservoirs. Moscow: Graal (in Russian). Bulatov, G.G. (1979). Underground storage of hydrogen. PhD thesis. Moscow Gubkin Oil and Gas University (in Russian). Buzek, F., Onderka, V., Vancura, P., and Wolf, I. (1994). Carbon isotope study of methane production in a town gas storage reservoir. Fuel 73 (5): 747– 752. Cahn, J.W. (1961). On spinodal decomposition. Acta Metall. 9: 795– 801. Cahn, J.W. (1977). Critical point wetting. J. Chem. Phys. 66: 3667. Cahn, J.W. and Hilliard, J.E. (1958). Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys 28: 258– 267. Carden, P.O. and Paterson, L. (1979). Physical, chemical and energy aspects of underground hydrogen storage. Int. J. Hydrogen Energy 4 (6): 559– 569. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G. (1971). Macrokinetics of Processes in Porous Media (Fuel Elements). Moscow: Nauka (in Russian). Chulichkov, A.I. (2003). Mathematicval Models of Nonlienar Dynamics. Moscow: Fizmatgiz (in Russian). Cole, J.D. (1968). Perturbation Methods in Applied Mathematics. Blaisdell Publishing Company. Cox, R.G. (1983). The spreading of a liquid on a rough solid surface. J. Fluid Mech. 131: 1– 26. Cox, R.G. (1986). The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168: 169– 194. Danaev, N.T., Korsakova, N.K., and Penkovskij, V.I. (2005). Mass Transfer in Wellbore Area and Electric Transport in the Nearwell Zone and Electromagnetic Logs. Almaty: Kazakh University Al Farabi (in Russian). DasGupta, S., Schonberg, J.A., Kim, I.Y., and Wayner, P.C. (1993). Use of augmented Young-Laplace equation to model equilibrium and evaporating extended menisci. J. Colloid Interface Sci. 157: 332– 342. Derjaguin, B.V. and Churaev, N.V. (1978). On the question of determining the concept of the disjoining pressure and its role in the equilibrium ad flow of thin films. J. Colloid Interface Sci. 66 (3): 389– 398. Derjaguin, B.V. and Kussakov, M.M. (1939). Anomalous properties of thin polymolecular films. Acta Physicochim. URSS 10 (1): 25– 44. Derjaguin, B.V. and Obukhov, E. (1936). Elastic properties of foams and thin films. Acta Physicochim. URSS 5 (1): 1– 22. Dinariev, O.Yu. (2001). Description of a multispecies mixture by the density-functional method in the presence of surface phases. Prikl. Math. Mekh. 62 (3): 433– 442. Dornseiffer, P., Meyer, B., and Heinzle, E. (1995). Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement. Biotechnol. Bioeng. 45 (3): 219– 228. Ebigbo, A., Golfier, F., and Quintard, M. (2013). A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage. Adv. Water Resour. 61: 74–85. Eggers, J. (2004a). Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93: 094502-1– 094502-4. Eggers, J. (2004b). Toward a description of contact line motion at higher capillary numbers. Phys. Fluids 16: 3491– 3493. Elferink, S.O., Maas, R.N., Harmsen, H., and Stams, A.J. (1995). Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164 (2): 119– 124. Elferink, S.O., Visser, A., Pol, L.W.H., and Stams, A.J. (1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15 (2–3): 119– 136. Entov, V.M., and Zazovsky, A. (1997). Nonlinear Waves in Physicochemical Hydrodynamics of Enhanced Oil Recovery, Multicomponent Flows. Moscow: Nedra (in Russian). Euiler, L. (1740). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes. 1707– 1783. Lausanna et Geneve: Marcum-Michaelem Boousquet & Soclos. Fisher, M.E. and Essam, J.W. (1961). Some cluster size and percolation problems. J. Math. Phys. 2: 609. Flach, E.H., Schnell, S., and Norbury, J. (2007). Turing pattern outside of the Turing domain. Appl. Math. Lett. 20 (9): 959– 963. de Gennes, P.-G. (1984a). The dynamics of a spreading droplet. C.R. Acad. Sci., Ser. II 298: 111– 115. de Gennes, P.-G. (1984b). Spreading laws for microscopic droplets. C.R. Acad. Sci., Ser. II 298: 475– 478. de Gennes, P.-G. (1985). Wetting: statics and dynamics. Rev. Mod. Phys. 57: 827– 863. de Gennes, P.-G., Brochart-Wyart, F., and Quéré, D. (2004). Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer-Verlag. Giles, C.H., MacEvan, S.N., Nakhwa, S.N., and Smith, D. (1960). Studies in Adsorption, Part XI: a system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3: 3973– 3993. Golubev, V.S., Grabovnikov, V.A., and Krichevec, G.N. (1978). On the dynamics of in situ leaching of ores on the basis of mathematical and physical modeling. In: Mathematical and Physical Modeling Ore-Forming Processes, 122– 142. Moscow: GIGHS (in Russian). Grenthe, I., Fuger, J., Konings, R.J.M. et al. (1992). Chemical Thermodynamics of Uranium (ed. H. Wanner and I. Forest). Nuclear Energy Agency. Guinzburg, V.L. and Landau, L.D. (1950). On the theory of superconductivity. J. Theor. Exp. Phys. 20: 1064 (in Russian). Gusev, M.V. and Mineeva, L.A. (1992). Microbiology. Moscow Lomonosov University (in Russian). Hagemann, B. (2017). Numerical and analytical modeling of gas mixing and bio-reactive transport during underground hydrogen storage. PhD thesis. Université de Lorraine, Nancy; Technical Clausthal University. Hagemann, B., Panfilov, M., and Ganzer, L. (2016). Multicomponent gas rising through water with dissolution in stratified porous reservoirs. J. Nat. Gas Sci. Eng. 31: 198–213. Hagemann, B., Rasoulzadeh, M., Panfilov, M. et al. (2014). Hydrogenization of underground storage of natural gas: impact of hydrogen on bio-chemical transformations of stored gas. Proceedings of ECMOR-13. Hayek, M., Mouche, E., and Mügler, C. (2009). Modeling vertical stratification of CO 2 injected into a deep layered aquifer. Adv. Water Resour. 32 (3): 450– 462. Hervet, H. and de Gennes, P.-G. (1984). The dynamics of wetting: precursor films in the wetting of “dry” solids. C.R. Acad. Sci., Ser. II 299: 499– 503. Hilliard, J.E. (1970). Spinodal decomposition. In: Phase Transformations (ed. H.I. Aaronson). Metals Park, OH: American Society for Metals. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid /VOF/ method for the dynamics of free boundaries. J. Comput. Phys. 39: 201– 225. Hoffman, R.L. (1975). A study of the advancing interface. J. Colloid Interface Sci. 50 (2): 228– 241. Israelachvili, J. (1992). Intermolecular and Surface Forces. London: Academic Press. Istomin, A.D., Ladejshhikov, A.V., Laptev, Ju.I. et al. (2014). The practice of application of mining-geological system “GNOM” for exploration, preparation and exploitation of the uranium deposits by underground leaching. Proceedings of the 7th International Research-Practical Conference “Nowadays Problems of Uranium Industry”, Almaty (25–27 September 2014) (in Russian). Jaffré, J. and Sboui, A. (2010). Henry's law and gas phase disappearance. Transp. Porous Media 82: 521– 526. Joanny, J.-F. (1986). Dynamics of wetting: interface profile of a spreading liquid. J. Theor. Appl. Mech. 5 (Special Issue): 249– 271. Joanny, J.-F. and de Gennes, P.-G. (1986). Upward creep of a wetting fluid: a scaling analysis. J. Phys. France 47: 121–127. Karadagli, F. and Rittmann, B.E. (2005). Kinetic characterization of methanobacterium bryantii moh. Environ. Sci. Technol. 39 (13): 4900– 4905. Khalil, H.K. (2014). Nonlilnear Systems. Pearson Education Limited. Landau, L.D. (1937a). On the theory of phase transitions. I. J. Exp. Theor. Phys. 7: 19 (in Russian). Landau, L.D. (1937b). On the theory of phase transitions. II. J. Exp. Theor. Phys. 7: 627 (in Russian). Lapidis, I.R. and Schiller, R. (1976). Model for the chemotactic response of a bacterial population. Biophys. J. 16: 779– 789. Léger, L. and Joanny, J.F. (1992). Liquid spreading. Rep. Prog. Phys. 55: 431– 486. Lemire, R.J., Berner, U., Musikas, C. et al. (2013). Chemical Thermodynamics of Iron, Part 1 (ed. J. Perrone). Issy-les-Moulineaux, France: OECD Nuclear Energy Agency, Data Bank. Lindblom, U.E. (1985). A conceptual design for compressed hydrogen storage in mined caverns. Int. J. Hydrogen Energy 10 (10): 667– 675. Lobry, J.R. (1991). Ré-évaluation du modèle de croisssance de Monod. Effet des antibiotiques sur l'énergie de maintenance. PhD thesis. Lyon. Logan, J.D. (2001). Transport Modeling in Hydrogeochemical Systems. New York: Springer-Verlag. Markin, V.S. (1963). Capillary equilibrium in a model of a porous body with intersecting pores of variable cross section. Dokl. Akad. Nauk SSSR 151: 620. Marrocco, A. (2003). Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. RAIRO-M2AN 34 (4): 617– 630. Marrocco, A. (2007). Aggrégation de bactéries. Simulations numériques de modèles de réaction-diffusion à l'aide des éléments finis mixtes. Rapport INRIA Rocquencourt, 57 p. Meeks, W.H. III (1981). A survey of the geometric results in the classical theory of minimal surfaces. Bol. Soc. Brasil Mat. 12: 29– 86. Merkin, J.H., Needham, D.J., and Scott, S.K. (1987). On the creation, growth and extinction of oscillatory solutions for a simple pooled chemical reaction scheme. SIAM J. Appl. Math. 47: 1040– 1060. Monod, J. (1949). The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371– 394. Moosa, S., Nemati, M., and Harrison, S.T.L. (2005). A kinetic study on anaerobic reduction of sulphate, Part II: incorporation of temperature effects in the kinetic model. Chem. Eng. Sci. 60: 3517– 3524. Moser, A. (1985). Kinetics of batch fermentations. In: Biotechnology, Vol. 2 (ed. H.J. Rehm and G. Reed), 253. VCH Verlagsgese llschaft mbH, Federal Republic of Germany. Mouche, E., Hayek, M., and Mügler, C. (2010). Upscaling of CO 2 vertical migration through a periodic layered porous medium: the capillary-free and capillary-dominant cases. Adv. Water Resour. 33: 1164– 11175. Murray, J.D. (2001). Mathematical Biology 1. An Introduction. New York: Springer-Verlag. Murray, J.D. (2003). Mathematical Biology 2. Spatial Models and Biomedical Applications. New York: Springer-Verlag. Nesterov, Ju.V. and Sultanov, J. (1983). On some laws of in situ leacnhig of uranium from ores. In: Uranium Chemistry, 91– 100. Moscow: Nauka (in Russian). Odencrantz, J.E. (1991). Modelling the biodegradation kinetics of dissolved organic contaminants in a heterogeneous two-dimensional aquifer. PhD thesis in Civil Engineering, Illinois. Oladyshkin, S. and Panfilov, M. (2007). Streamline splitting between thermodynamics and hydrodynamics in a compositional gas-liquid flow through porous media. C.R. Acad. Sci. Paris, Sér. IIb, Mćanique 335: 7– 12. Oladyshkin, S., Royer, J.-J., and Panfilov, M. (2008). Effective solution through the streamline technique and HT-splitting for the 3D dynamic analysis of the compositional flows in oil reservoirs. Transp. Porous Media 74 (3): 311– 329. Oron, A.S., Davis, H., and Bankoff, S.G. (1997). Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69: 931– 980. Orr, F.M. (2002). Theory of Gas Injection Processes. Stanford, CA: Stanford University. Ostwald, W. (1896). Lehrbuch der Allgemeinen Chemie, Vol. 2, Part 1. Germany: Leipzig. Panfilov, M. (1990). Percolation characteristics of branching models of porous media. Fluid Dyn. 25 (6): 898– 903. Panfilov, M. (2010). Underground storage of hydrogen: in situ self-organisation and methane generation. Transp. Porous Media 85 (3): 841– 865. Panfilov, M. (2015). Underground and pipeline hydrogen storage. In: Compendium of Hydrogen Energy, Chapter 4 (ed. R.B. Gupta), 92– 116. Elsevier. Panfilov, M. and Panfilova, I. (2014). Method of negative saturations for flow with variable number of phases in porous media: extension to three-phase multi-component case. Comput. Geosci. 18 (3–4): 385– 399. Panfilov, M. and Rasoulzadeh, M. (2010). Interfaces of phase transition and disappearance and method of negative saturation for compositional flow with diffusion and capillarity in porous media. Transp. Porous Media 83 (1): 73– 98. Panfilov, M., Reitenbach, V., and Ganzer, L. (2016). Self-organization and shock waves in underground methanation reactors and hydrogen storages. Environ. Earth Sci. 75 (4): 1– 12. Panfilov, M., Toleukhanov, A., and Rasoulzadeh, M. (2014). Self-organization in underground bacterial methanation reactors, hydrogen storages and natural hydrogen reservoirs. In: Proceedings of Réunion Sciences de la Terre, Pau–France (27–31 October 2014). Panfilov, M., Uralbekov, B., and Burkitbayev, M. (2016). Reactive transport in the underground leaching of uranium: asymptotic analytical solution for multi-reaction model. Hydrometallurgy 160: 60– 72. Paterson, L. (1983). The implications of fingering in underground hydrogen storage. Int. J. Hydrogen Energy 8 (1): 53– 59. Penkovskij, V.I. and Rybakova, S.T. (1989). Numerical modeling of mass trenafer under in situ leaching. Dynamika sploshnoi sredy, Sib. Otd. AN SSSR, 90, pp. 81– 92 (in Russian). Pismen, L.M. (2002). Mesoscopic hydrodynamics of contact line motion. Colloids Surf., A 206: 11– 30. Polynovsky, K.D. (2012). Approach complexe to solve the problem of intensification of in situ leaching of uranium, Min. Inf.-Anal. Bull. 7: 64–73 (in Russian). Popescu, M.N., Oshanin, G., Dietrich, G., and Cazabat, A.-M. (2012). Precursor films in wetting phenomena. J. Phys. Condens. Matter 24: 243102. Prausnitz, J.M., Lichtenthaler, R.N., and de Azevedo, E.G. (1999). Molecular Thermodynamics of Fluid-Phase Equilibria, 3e. Upper Saddle River, NJ: Prentice-Hall. Robinson, J.A. and Tiedje, J.M. (1984). Competition between sulfate-reducing and methanogenic bacteria for H 2 under resting and growing conditions. Arch. Microbiol. 137 (1): 26– 32. Rozendorn, E.R. (2006). Theory of Surfaces, 304 p. Moscow: Phyzmatgiz. Rubin, J. (1983). Transport of reacting solutions in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resour. Res. 19: 1231– 1252. Sandler, S.I. (1999). Chemical and Engineering Thermodynamics, 3e. New York: Wiley. Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81 (3): 389– 400. Sen, N.K., Das, D., Khilar, K.C., and Suraishkumar, G.K. (2005). Bacterial transport in porous media: new aspects of the mathematical models. Colloids Surf., A 260: 53– 62. Sethian, J.A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press. Sevastyanov, B.A. (1971). Branching Processes. Moscow: Nauka (in Russian). Sheldon, J. and Cardwell, W. (1959). One-Dimensional, Incompressible, Noncapillary, Two-Phase Fluid Flow in a Porous Medium. Society of Petroleum Engineers. Simbeck, D.R. (2004). CO 2 capture and storage–the essential bridge to the hydrogen economy. Energy 29: 1633– 1641. Smigai, P., Greksak, M., Kozankova, J. et al. (1990). Methanogenic bacteria as a key factor involved in changes of town gas in an underground reservoir. FEMS Microbiol. Ecol. 73: 221– 224. Snoeijer, J.H. (2006). Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18: 021701-1– 021701-4. Snoeijer, J.H., Delon, G., Andreotti, B., and Fermigier, M. (2006). Avoided critical behavior in dynamically forced wetting. Phys. Rev. Lett. 96: 174504. Stams, A.J.M., Elferink, S.O., and Westermann, P. (2003). Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. In: Biomethanation I, 31– 56. Berlin: Springer-Verlag. Stinchcombe, R.B. (1974). Conductivity and spin-wave stiffness in disordered systems–an exactly soluble model. J. Phys. C: Solid State Phys. 7: 179– 273. Strier, D.E. and Dawson, S.P. (2004). Role of complexing agents in the appearance of Turing patterns. Phys. Rev. E 69: 066207. Svirezhev, Yu.M. (1987). Nonlinear Waves, Dissipate Structures and Chatastrophes in Ecology. Moscow: Nauka. Taconi, K.A. (2004). Methanogenic generation of biogas from synthesis-gas fermentation wastewaters. PhD thesis in Chemical Engineering. Mississippi State University, USA. Tanner, L.H. (1979). The spreading of silicone oil drop on horizontal surfaces. J. Phys. D 12: 1473– 1484. Taylor, J.B., Alderson, J.E.A., Kalyanam, K.M. et al. (1986). Technical and economic assessment of methods for the storage of large quantities of hydrogen. Int. J. Hydrogen Energy 11 (1): 5– 22. Teletzke, G.-F., Davis, H.T., and Scriven, L.E. (1988). Wetting hydrodynamics. Rev. Phys. Appl. 23: 989– 1007. Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics , Vol. 140. Providence, RI: American Mathematical Society. Tester, J.W. and Modell, M. (1996). Thermodynamics and Its Applications, 3e. Upper Saddle River, NJ: Prentice-Hall. Torrero, M.E., Baraj, E., de Pablo, J. et al. (1997). Kinetics of corrosion and dissolution of uranium dioxide as a function of pH. Int. J. Chem. Kinet. 29: 261– 267. Turing, A.M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. London, Ser. B 237: 37– 72. Vavilin, V.A., Lokshina, L.Ya., Rytov, S.V. et al. (2000). Description of two-step kinetics in methane formation during psychrophilic H 2 /CO 2 and mesophilic glucose conversions. Bioresour. Technol. 71: 195– 209. Voinov, O.V. (1976). Hydrodynamics of wetting. Fluid Dyn. 11: 714– 721 (English translation). Voinov, O.V. (1977). Inclination angles of the boundary in moving liquid layers. J. Appl. Mech. Tech. Phys. 18: 216 (English translation). Voinov, O.V. (1995). Motion of line of contact of three phases on a solid: thermodynamic and asymptotic theory. Int. J. Multiphase Flow 21 (5): 801– 816. R.C. Weast ed. (1972). Handbook of Chemistry and Physics, 53e. Cleveland, OH: Chemical Rubber Co. Weber, M. (2001). Classical Minimal Surfaces in Euclidean Space by Examples. Preprint Blumington: Indiana University. Weber, M. and Wolf, M. (1998). Minimal surfaces of least total curvature and moduli spaces of plane polygonal arcs. Geom. Funct. Anal. 8: 1129– 1170. Weber, M. and Wolf, M. (2002). Teichm ü ller theory and handle addition for minimal surfaces. Ann. Math. 156: 713– 795. Zaidel, J. and Zazovsky, A. (1999). Theoretical study of multicomponent soil vapor extraction: propagation of evaporation-condensation fronts. J. Contam. Hydrol. 37: 225– 268. Zittel, W. and Wurster, R. (1996). Hydrogen in the Energy Sector, Vol. 7. Ottobrunn: Laudwig-Bolkow Systemtechnik GmbH. Physicochemical Fluid Dynamics in Porous Media: Applications in Geosciences and Petroleum Engineering ReferencesRelatedInformation" @default.
- W4211239478 created "2022-02-13" @default.
- W4211239478 date "2018-12-07" @default.
- W4211239478 modified "2023-10-16" @default.
- W4211239478 title "Bibliography" @default.
- W4211239478 cites W11372905 @default.
- W4211239478 cites W1521738998 @default.
- W4211239478 cites W1532508334 @default.
- W4211239478 cites W1806777731 @default.
- W4211239478 cites W1967738256 @default.
- W4211239478 cites W1971723555 @default.
- W4211239478 cites W1971804238 @default.
- W4211239478 cites W1976011246 @default.
- W4211239478 cites W1980661496 @default.
- W4211239478 cites W1981074985 @default.
- W4211239478 cites W1982131349 @default.
- W4211239478 cites W1984773990 @default.
- W4211239478 cites W1985088690 @default.
- W4211239478 cites W1985366083 @default.
- W4211239478 cites W1985944741 @default.
- W4211239478 cites W1986391085 @default.
- W4211239478 cites W1988443964 @default.
- W4211239478 cites W1992815270 @default.
- W4211239478 cites W1993350023 @default.
- W4211239478 cites W1996769092 @default.
- W4211239478 cites W2000196781 @default.
- W4211239478 cites W2004539784 @default.
- W4211239478 cites W2008285335 @default.
- W4211239478 cites W2008881787 @default.
- W4211239478 cites W2009552285 @default.
- W4211239478 cites W2012284948 @default.
- W4211239478 cites W2022513440 @default.
- W4211239478 cites W2022638381 @default.
- W4211239478 cites W2023109721 @default.
- W4211239478 cites W2023248330 @default.
- W4211239478 cites W2026742432 @default.
- W4211239478 cites W2027502822 @default.
- W4211239478 cites W2029870529 @default.
- W4211239478 cites W2030871223 @default.
- W4211239478 cites W2032400955 @default.
- W4211239478 cites W2032411420 @default.
- W4211239478 cites W2036717564 @default.
- W4211239478 cites W2039828592 @default.
- W4211239478 cites W2044723544 @default.
- W4211239478 cites W2046528357 @default.
- W4211239478 cites W2050105659 @default.
- W4211239478 cites W2060673571 @default.
- W4211239478 cites W2061078684 @default.
- W4211239478 cites W2063938241 @default.
- W4211239478 cites W2065814106 @default.
- W4211239478 cites W2066169217 @default.
- W4211239478 cites W2072423683 @default.
- W4211239478 cites W2073476665 @default.
- W4211239478 cites W2073877978 @default.
- W4211239478 cites W2077313431 @default.
- W4211239478 cites W2078246727 @default.
- W4211239478 cites W2078787252 @default.
- W4211239478 cites W2084788563 @default.
- W4211239478 cites W2089494072 @default.
- W4211239478 cites W2089684581 @default.
- W4211239478 cites W2089863898 @default.
- W4211239478 cites W2111364030 @default.
- W4211239478 cites W2114955730 @default.
- W4211239478 cites W2138413307 @default.
- W4211239478 cites W2138907163 @default.
- W4211239478 cites W2147409502 @default.
- W4211239478 cites W2154582065 @default.
- W4211239478 cites W2154860719 @default.
- W4211239478 cites W2155788949 @default.
- W4211239478 cites W2169975000 @default.
- W4211239478 cites W2196118611 @default.
- W4211239478 cites W2332330293 @default.
- W4211239478 cites W2485244922 @default.
- W4211239478 cites W2569713119 @default.
- W4211239478 cites W2570637109 @default.
- W4211239478 cites W2614283331 @default.
- W4211239478 cites W2768510494 @default.
- W4211239478 cites W2973388969 @default.
- W4211239478 cites W3099144221 @default.
- W4211239478 cites W3100847462 @default.
- W4211239478 cites W4206417399 @default.
- W4211239478 cites W4206832447 @default.
- W4211239478 cites W4213304987 @default.
- W4211239478 cites W4250716583 @default.
- W4211239478 cites W655347443 @default.
- W4211239478 doi "https://doi.org/10.1002/9783527806577.biblio" @default.
- W4211239478 hasPublicationYear "2018" @default.
- W4211239478 type Work @default.
- W4211239478 citedByCount "0" @default.
- W4211239478 crossrefType "book-chapter" @default.
- W4211239478 hasBestOaLocation W42112394781 @default.
- W4211239478 hasConcept C161191863 @default.
- W4211239478 hasConcept C41008148 @default.
- W4211239478 hasConcept C97002063 @default.
- W4211239478 hasConceptScore W4211239478C161191863 @default.
- W4211239478 hasConceptScore W4211239478C41008148 @default.
- W4211239478 hasConceptScore W4211239478C97002063 @default.
- W4211239478 hasLocation W42112394781 @default.