Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211241605> ?p ?o ?g. }
- W4211241605 endingPage "178" @default.
- W4211241605 startingPage "155" @default.
- W4211241605 abstract "Free Access References Rabeb Ben Kahla, Rabeb Ben KahlaSearch for more papers by this authorAbdelwahed Barkaoui, Abdelwahed BarkaouiSearch for more papers by this authorTarek Merzouki, Tarek MerzoukiSearch for more papers by this author Book Author(s):Rabeb Ben Kahla, Rabeb Ben KahlaSearch for more papers by this authorAbdelwahed Barkaoui, Abdelwahed BarkaouiSearch for more papers by this authorTarek Merzouki, Tarek MerzoukiSearch for more papers by this author First published: 09 December 2019 https://doi.org/10.1002/9781119681625.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abragam, A. (1983). The Principles of Nuclear Magnetism. Oxford Science Publications, Oxford, UK. Adalsteinsson, D. and Sethian, J.A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118(2), 269– 277. Adam, A., Dixon, A.K., Gillard, J.H., Schaefer-Prokop, C., Grainger, R.G., and Allison, D.J. (2014). Grainger & Allison's Diagnostic Radiology. Elsevier Health Sciences, Edinburgh, UK. Agrawal, M., Tsakalides, P., and Achim, A. (2010). Medical image fusion using the convolution of meridian distributions. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3727– 3730. Ahmad, H.A., Yu, H.J., and Miller, C.G. (2014). Medical imaging modalities. In Medical Imaging in Clinical Trials, C.G. Miller, J. Krasnow, and L.H. Schwartz (eds). Springer, Cham, Switzerland. Aichinger, H., Dierker, J., Joite-Barfuß, S., and Säbel, M. (2011). Radiation Exposure and Image Quality in X-ray Diagnostic Radiology: Physical Principles and Clinical Applications. Springer Science & Business Media, Cham, Switzerland. Alam, F. and Rahman, S.U. (2016). Intrinsic registration techniques for medical images: A state-of-the-art review. Journal of Postgraduate Medical Institute (Peshawar-Pakistan), 30(2), 119– 132. Alam, F., Rahman, S.U., Ullah, S., and Gulati, K. (2018). Medical image registration in image guided surgery: Issues, challenges and research opportunities. Biocybernetics and Biomedical Engineering, 38(1), 71– 89. Alfano, B., Ciampi, M., and De Pietro, G. (2007). A wavelet-based algorithm for multimodal medical image fusion. In International Conference on Semantic and Digital Media Technologies, B. Falcidieno, M. Spagnuolo, Y. Avrithis, I. Kompatsiaris and P. Buitelaar (eds). Springer, Cham, Switzerland. Alsayednoor, J., Metcalf, L., Rochester, J., Dall'Ara, E., Mccloskey, E., and Lacroix, D. (2018). Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone. Biomechanics and Modeling in Mechanobiology, 17(6), 1715– 1730. Althomali, M.A.M., Wille, M.-L., Shortell, M.P., and Langton, C.M. (2018). Estimation of mechanical stiffness by finite element analysis of ultrasound computed tomography (UCT-FEA); a comparison with X-ray μCT based FEA in cancellous bone replica models. Applied Acoustics, 133, 8– 15. Anna, W., Jie, W., Dan, L., and Yu, C. (2007). Research on medical image fusion based on orthogonal wavelet packets transformation combined with 2v-SVM . IEEE/ICME International Conference on Complex Medical Engineering, 2007. CME 2007, 670– 675. Arici, T., Dikbas, S., and Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18(9), 1921– 1935. Arjmand, H.S., Nazemi, M., Kontulainen, S.A., McLennan, C.E., Hunter, D.J., Wilson, D.R., and Johnston, J.D. (2018). Mechanical metrics of the proximal tibia are precise and differentiate osteoarthritic and normal knees: A finite element study. Scientific Reports, 8, 11478. Assareh, A. and Volkert, L.G. (2009). Fuzzy rule base classifier fusion for protein mass spectra based ovarian cancer diagnosis. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2009. CIBCB'09, 193– 199. Avor, J.K. and Sarkodie-Gyan, T. (2009). An approach to sensor fusion in medical robots. IEEE International Conference on Rehabilitation Robotics, 2009. ICORR 2009, 818– 822. Bajuri, M.N., Kadir, M.R.A., Raman, M.M., and Kamarul, T. (2012). Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: A finite element analysis. Medical Engineering & Physics, 34(9), 1294– 1302. Barillot, C., Lemoine, D., Le Briquer, L., Lachmann, F., and Gibaud, B. (1993). Data fusion in medical imaging: Merging multimodal and multipatient images, identification of structures and 3D display aspects. European Journal of Radiology, 17(1), 22– 27. Barkaoui, A., Kahla, R.B., Merzouki, T., and Hambli, R. (2017). Age and gender effects on bone mass density variation: Finite elements simulation. Biomechanics and Modeling in Mechanobiology, 16(2), 521– 535. Barkaoui, A., Ben Kahla, R., Merzouki, T., and Hambli, R. (2019). Numerical simulation of apparent density evolution of trabecular bone under fatigue loading: Effect of bone initial properties. Journal of Mechanics in Medicine and Biology, 19(1), 18. Barra, V. and Boire, J.-Y. (2001a). A general framework for the fusion of anatomical and functional medical images. NeuroImage, 13(3), 410– 424. Barra, V. and Boire, J.-Y. (2001b). Automatic segmentation of subcortical brain structures in MR images using information fusion. IEEE Transactions on Medical Imaging, 20(7), 549– 558. Bazzocchi, A. and Diano, D. (2014). Dual-energy x-ray absorptiometry in obesity. Canadian Medical Association Journal, 186(1), 48. Bazzocchi, A., Diano, D., Ponti, F., Salizzoni, E., Albisinni, U., Marchesini, G., and Battista, G. (2014). A 360-degree overview of body composition in healthy people: Relationships among anthropometry, ultrasonography, and dual-energy x-ray absorptiometry. Nutrition, 30(6), 696– 701. Bellemère, P., Maes-Clavier, C., Loubersac, T., Gaisne, E., and Kerjean, Y. (2012). Amandys® implant: Novel pyrocarbon arthroplasty for the wrist. Chirurgie de la Main, 31(4), 176– 187. Berger, M., Yang, Q., and Maier, A. (2018). X-ray imaging. In Medical Imaging Systems, A. Maier, S. Steidl, V. Christlein, and J. Hornegger (eds). Springer, Cham, Switzerland. Bernecker, D. (2018). Image processing. In Medical Imaging Systems, A. Maier, S. Steidl, V. Christlein, and J. Hornegger (eds). Springer, Cham, Switzerland. Berton, A., Salvatore, G., Giambini, H., Ciuffreda, M., Longo, U.G., Denaro, V., Thoreson, A., and An, K.-N. (2018). A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae. The Journal of Spinal Cord Medicine, 15, 1– 7. Bhattacharya, M. and Das, A. (2011). Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches. In Software Tools and Algorithms for Biological Systems, H. Arabnia and Q.-N. Tran (eds). Springer, Cham, Switzerland. Bin, L., Shanxing, O., and Lianfang, T. (2010). Rapid multimodal medical image registration and fusion in 3D conformal radiotherapy treatment planning. HKIE Transactions, 17(3), 34– 44. Bloch, I., Colliot, O., Camara, O., and Géraud, T. (2005). Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI. Pattern Recognition Letters, 26(4), 449– 457. Bloembergen, N., Purcell, E.M., and Pound, R.V. (1948). Relaxation effects in nuclear magnetic resonance absorption. Physical Review, 73(7), 679. Brock, G.N., Beavis, W.D., and Kubatko, L.S. (2009). Fuzzy logic and related methods as a screening tool for detecting gene regulatory networks. Information Fusion, 10(3), 250– 259. Bushberg, J.T. and Boone, J.M. (2011). The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, Philadelphia, USA. Caouette, C., Ikin, N., Villemure, I., Arnoux, P.J., Rauch, F., and Aubin, C.É. (2017). Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta. Medical & Biological Engineering & Computing, 55(4), 549– 560. Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61– 79. Ceniccola, G.D., Castro, M.G., Piovacari, S.M.F., Horie, L.M., Corrêa, F.G., Barrere, A.P.N., and Toledo, D.O. (2018). Current technologies in body composition assessment: Advantages and disadvantages. Nutrition, 62, 25– 31. Chaira, T. (2015). Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques. CRC Press, Boca Raton, USA. Chan, T.F. and Vese, L.A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266– 277. Chang, G., Honig, S., Brown, R., Deniz, C.M., Egol, K.A., Babb, J.S., Regatte, R.R., and Rajapakse, C.S. (2014). Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: Lower bone strength in patients with fragility fractures compared with control subjects. Radiology, 272(2), 464– 474. Chen, W.M., Lee, S.J., and Lee, P.V. (2015). Plantar pressure relief under the metatarsal heads: Therapeutic insole design using three-dimensional finite element model of the foot. Journal of Biomechanics, 48(4), 659– 665. Chen, Y., Dall, E., Sales, E., Manda, K., Wallace, R., Pankaj, P., and Viceconti, M. (2017). Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study. Journal of the Mechanical Behavior of Biomedical Materials, 65, 644– 651. Chen, W.-M., Jin, J., Park, T., Ryu, K.-S., and Lee, S.-J. (2018). Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses – A finite element analysis. Clinical Biomechanics, 59, 19– 26. Chen, Y.N., Chang, C.W., Chang, C.H., Chung, C.R., Li, C.T., and Peng, Y.T. (2019). Gap between the fragment and the tibia affects the stability of tibial tubercle osteotomy: A finite element study. Medical Engineering & Physics, 68, 57– 64. Cheng, S., He, J., and Lv, Z. (2008). Medical image of PET/CT weighted fusion based on wavelet transform. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008, 2523– 2525. Chiorean, L. and Vaida, M.-F. (2009). Medical image fusion based on discrete wavelet transform using Java technology. Proceedings of the ITI 2009 31st International Conference on Information Technology Interfaces, 2009. ITI'09, 55– 60. Chitsazan, A., Herzog, W., Rouhi, G.A., and Abbasi, M. (2018). Alteration of strain distribution in distal tibia after triple arthrodesis: Experimental and finite element investigations. Journal of Medical and Biological Engineering, 38, 469– 481. Choi, J., Shin, D.-A., and Kim, S. (2017). Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: A finite element study. Spine, 42(6), E332– E339. Christian, E., Yu, C., and Apuzzo, M.L.J. (2014). Focused ultrasound: Relevant history and prospects for the addition of mechanical energy to the neurosurgical armamentarium. World Neurosurgery, 82(3–4), 354– 365. Ciampi, M. (2010). Medical image fusion for color visualization via 3D RDWT . Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), 16. Naples, Italy. Cikes, M., D'hooge, J., and Solomon, S.D. (2017). Physical Principles of Ultrasound. In Essential Echocardiography: A Companion to Braunwald's Heart Disease, S.D. Solomon, J.C. Wu, L.D. Gillam (eds). Elsevier, Philadelphia, USA. Constantinos, S.P., Pattichis, M.S., and Micheli-Tzanakou, E. (2001). Medical imaging fusion applications: An overview. Conference Record of the Thirty-fifth Asilomar Conference on Signals, Systems and Computers, 2001, 1263– 1267(2). Cootes, T.F., Taylor, C.J., Cooper, D.H., and Graham, J. (1995). Active shape models: Their training and application. Computer Vision and Image Understanding, 61(1), 38– 59. Cootes, T.F., Edwards, G.J., and Taylor, C.J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis & Machine Intelligence, 23(6), 681– 685. Costa, M.J., Delingette, H., Novellas, S., and Ayache, N. (2007). Automatic segmentation of bladder and prostate using coupled 3D deformable models. In 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Ayache, S. Ourselin, and A. Maeder (eds). Springer, Brisbane, Australia. Cuadra, M.B. (2003). Atlas-based segmentation and classification of magnetic resonance brain images. Thesis, Swiss Federal Institute of Technology Lausanne, Switzerland. Cui, Z., Zhang, G., and Wu, J. (2009). Medical image fusion based on wavelet transform and independent component analysis. IEEE International Joint Conference on Artificial Intelligence, 2009. JCAI'09, 480– 483. Currie, S., Hoggard, N., Craven, I.J., Hadjivassiliou, M., and Wilkinson, I.D. (2013). Understanding MRI: Basic MR physics for physicians. Postgraduate Medical Journal, 89(1050), 209– 223. Das, A. and Bhattacharya, M. (2009). Evolutionary algorithm based automated medical image fusion technique: Comparative study with fuzzy fusion approach. World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009, 269– 274. Davies, D.H. and Dance, D.R. (1990). Automatic computer detection of clustered calcifications in digital mammograms. Physics in Medicine and Biology, 35, 1111– 1118. De, R.K. and Ghosh, A. (2009). Linguistic recognition system for identification of some possible genes mediating the development of lung adenocarcinoma. Information Fusion, 10(3), 260– 269. Delbeke, D. and Segall, G.M. (2011). Status of and trends in nuclear medicine in the United States. Journal of Nuclear Medicine, 52(2), 24S. Dong, L., Li, G., Mao, H., Marek, S., and Yang, K.H. (2013). Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Annals of Biomedical Engineering, 41(12), 2538– 2552. Dou, W., Ruan, S., Liao, Q., Bloyet, D., and Constans, J.-M. (2003a). Knowledge based fuzzy information fusion applied to classification of abnormal brain tissues from MRI. Proceedings from the Seventh International Symposium on Signal Processing and Its Applications, 2003, 681– 684(1). Dou, W., Ruan, S., Liao, Q., Bloyet, D., Constans, J.-M., and Chen, Y. (2003b). Fuzzy information fusion scheme used to segment brain tumor from MR images. In Fuzzy Logic and Applications, Di V. Gesú, F. Masulli, and A. Petrosino (eds). Springer, Naples, Italy, 208– 215. Dou, W., Ruan, S., Chen, Y., Bloyet, D., and Constans, J.-M. (2007). A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image and Vision Computing, 25(2), 164– 171. Duy, L. (2009). Review and enhancement optimization methods in image registration. Master's Thesis, MEng. Imperial College London, UK. Eggermont, F., Derikx, L.C., Free, J., van Leeuwen, R., van der Linden, Y.M., Verdonschot, N., and Tanck, E. (2018). Effect of different CT scanners and settings on femoral failure loads calculated by finite element models. Journal of Orthopaedic Research, 36(8), 2288– 2295. El-Gamal, F.E.-Z.A., Elmogy, M., and Atwan, A. (2016). Current trends in medical image registration and fusion. Egyptian Informatics Journal, 17(1), 99– 124. Ernst, R.R., Bodenhausen, G., and Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions, vol. 14. Clarendon Press, Oxford, UK. Feeman, T.G. (2010). The Mathematics of Medical Imaging. Springer, Cham, Switzerland. Fenchel, M., Thesen, S., and Schilling, A. (2008). Automatic labeling of anatomical structures in MR fastview images using a statistical atlas. In 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, D. Metaxas, L. Axel, G. Fitchtinger, and G. Székely (eds). Springer, New York, USA. Flohr, T. (2013). CT systems. Current Radiology Reports, 1(1), 52– 63. https://doi.org/10.1007/s40134-012-0005-5. Flower, M. (2012). Webb's Physics of Medical Imaging. CRC Press. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=qkFljemf7y0C&oi=fnd&pg=PP1&dq=Medical+imaging+&ots=bKimgZ-zHP&sig=Xt5imPkN9wEYdyeuuFHAENI_Pjg. Follet, H., Peyrin, F., Vidal-Salle, E., Bonnassie, A., Rumelhart, C., and Meunier, P.J. (2007). Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. Journal of Biomechanics, 40(10), 2174– 2183. Fosbøl, M.Ø. and Zerahn, B. (2015). Contemporary methods of body composition measurement. Clinical Physiology and Functional Imaging, 35(2), 81– 97. Fougeron, N., Rohan, P.-Y., Macron, A., Travert, C., Pillet, H., and Skalli, W. (2018). Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: Application to 120 clinical cases. Computer Methods in Biomechanics and Biomedical Engineering, 21(5), 408– 412. Fung, A., Loundagin, L.L., and Edwards, W.B. (2017). Experimental validation of finite element predicted bone strain in the human metatarsal. Journal of Biomechanics, 60, 22– 29. Galbusera, F., Qian, Z., Casaroli, G., Bassani, T., Costa, F., Schlager, B., and Wilke, H.-J. (2018). The role of the size and location of the tumors and of the vertebral anatomy in determining the structural stability of the metastatically involved spine: A finite element study. Translational Oncology, 11(3), 639– 646. García-Figueiras, R., Goh, V.J., Padhani, A.R., Baleato-González, S., Garrido, M., León, L., and Gómez-Caamaño, A. (2013). CT perfusion in oncologic imaging: A useful tool?. American Journal of Roentgenology, 200(1), 8– 19. Garg, S., Kiran, K.U., Mohan, R., and Tiwary, U.S. (2006). Multilevel medical image fusion using segmented image by level set evolution with region competition. 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005, 7680– 7683. Gibbs, J.C., Giangregorio, L.M., Wong, A.K.O., Josse, R.G., and Cheung, A.M. (2017). Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40 years and older. Bone, 103, 47– 54. Gislason, M.K., Foster, E., Bransby-Zachary, M., and Nash, D.H. (2017). Biomechanical analysis of the Universal 2 implant in total wrist arthroplasty: A finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 20(10), 1113– 1121. Gonzalez, R.C., and Woods, R.E. (1992). Digital Image Processing. Addison-Wesley Publishing Company, New York, USA. Gu, K., Zhai, G., Lin, W., and Liu, M. (2016). The analysis of image contrast: From quality assessment to automatic enhancement. IEEE Transactions on Cybernetics, 46(1), 284– 297. Guglielmi, G., Ponti, F., Agostini, M., Amadori, M., Battista, G., and Bazzocchi, A. (2016). The role of DXA in sarcopenia. Aging Clinical and Experimental Research, 28(6), 1047– 1060. Gunderman, R.B. (2012). X-Ray Vision: The Evolution of Medical Imaging and Its Human Significance. Oxford University Press, Oxford, UK. Gupta, R., Phan, C.M., Leidecker, C., Brady, T.J., Hirsch, J.A., Nogueira, R.G., and Yoo, A.J. (2010). Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology, 257(1), 205– 211. Gupta, A.K., Chowdhury, V., and Khandelwal, N. (2013). Diagnostic Radiology: Recent Advances and Applied Physics in Imaging. JP Medical Ltd, New Delhi, India. Haidekker, M.A. (2013). Medical Imaging Technology. Springer, New York, USA. Holden, K.R., Titus, M.O., and Van Tassel, P. (1999). Cranial magnetic resonance imaging examination of normal term neonates: A pilot study. Journal of Child Neurology, 14(11), 708– 710. Huang, C.-H. and Lee, J.-D. (2004). Improving MMI with enhanced-FCM for the fusion of brain MR and SPECT images. Biomedical Engineering: Applications, Basis and Communications, 16(04), 185– 189. Huang, S.-C., Cheng, F.-C., and Chiu, Y.-S. (2013). Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Transactions on Image Processing, 22(3), 1032– 1041. Hussein, L.A. (2015). A CT-based 3D-Finite element analysis of using zirconia prosthetic material as a full-arch hybrid fixed detachable mandibular prosthesis. Journal of American Science, 11(2), 108– 118. Hwang, K.H., Lee, H., and Choi, D. (2012). Medical image retrieval: Past and present. Healthcare Informatics Research, 18(1), 3– 9. Jackman, T.M., DelMonaco, A.M., and Morgan, E.F. (2016). Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. Journal of Biomechanics, 49(2), 267– 275. Jalil, M.H., Mazlan, M.H., and Todo, M. (2017). Biomechanical comparison of polymeric spinal cages using Ct based finite element method. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(2), 110– 117. Jenkinson, M. and Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143– 156. Julian, P. (2012). Méthodes variationnelles pour la segmentation avec application à la réalité augmentée. PhD, Institut National Polytechnique de Toulouse, France. Kahla, R.B., Barkaoui, A., and Merzouki, T. (2018). Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation. Journal of the Mechanical Behavior of Biomedical Materials, 84, 64– 73. Kapoor, R., Dutta, A., Bagai, D., and Kamal, T.S. (2003). Fusion for registration of medical images-a study. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, 2003, 180– 185. Kasban, H., El-Bendary, M.A.M., and Salama, D.H. (2015). A comparative study of medical imaging techniques. International Journal of Information Science and Intelligent Systems, 4, 37– 58. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321– 331. Kavitha, C.T. and Chellamuthu, C. (2010). Multimodal medical image fusion based on integer wavelet transform and neuro-fuzzy. 2010 International Conference on Signal and Image Processing (ICSIP), 296– 300. Kawabata, Y., Matsuo, K., Nezu, Y., Kamiishi, T., Inaba, Y., and Saito, T. (2017). The risk assessment of pathological fracture in the proximal femur using a CT-based finite element method. Journal of Orthopaedic Science, 22(5), 931– 937. Kendler, D.L., Borges, J.L.C., Fielding, R.A., Itabashi, A., Krueger, D., Mulligan, K., Camargos, B.M., Sabowitz, B., Wu, C.H., Yu, E.W., and Shepherd, J. (2013). The official positions of the International Society for Clinical Densitometry: Indications of use and reporting of DXA for body composition. Journal of Clinical Densitometry, 16(4), 496– 507. Khalifa, F., Beache, G.M., Gimel'farb, G., Suri, J.S., and El-Baz, A.S. (2011). State-of-the-art medical image registration methodologies: A survey. In Multi Modality State-of-the-art Medical Image Segmentation and Registration Methodologies, vol. 1, A.S. El-Baz, U. Rajenda Archaryu, M. Mirmehdi, and J.S. Suri (eds). Springer, New York, USA. Kim, Y.-T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1– 8. Klein, J., Pohl, J., Vinson, E.N., Brant, W.E., and Helms, C.A. (2018). Brant and Helms' Fundamentals of Diagnostic Radiology. Lippincott Williams & Wilkins, Philadelphia, USA. Kohlberger, T., Sofka, M., Zhang, J., Birkbeck, N., Wetzl, J., Kaftan, J., Declerck, J., and Zhou, S.K. (2011). Automatic multi-organ segmentation using learning-based segmentation and level set optimization. In 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, G. Fichtinger, A. Martel, and T. Peters (eds). Springer, Toronto, Canada. Kok, C.W., Hui, Y., and Nguyen, T.Q. (1996). Medical image pseudo coloring by wavelet fusion. Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine, 648– 649(2). Kor, S. and Tiwary, U. (2004). Feature level fusion of multimodal medical images in lifting wavelet transform domain. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004. IEMBS'04, 1479– 1482(1). Lai, S.-H. and Fang, M. (1998). Adaptive medical image visualization based on hierarchical neural networks and intelligent decision fusion. Proceedings of the 1998 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing VIII, 1998, 438– 447. Lederman, D., Zheng, B., Wang, X., Wang, X.H., and Gur, D. (2011). Improving breast cancer risk stratification using resonance-frequency electrical impedance spectroscopy through fusion of multiple classifiers. Annals of Biomedical Engineering, 39(3), 931– 945. Levitt, M.H. (2001). Spin Dynamics: Basics of Nuclear Magnetic Resonance. John Wiley & Sons, Chichester, UK. Li, W. and Zhu, X. (2005). A new algorithm of multi-modality medical image fusion based on pulse-coupled neural networks. In 1st International Conference on Natural Computation, L. Wang, K. Chen, and Y.S. Ong (eds). Springer, Changsha, China. Li, H., Deklerck, R., De Cuyper, B., Hermanus, A., Nyssen, E., and Cornelis, J. (1995). Object recognition in brain CT-scans: Knowledge-based fusion of data from multiple feature extractors. IEEE Transactions on Medical Imaging, 14(2), 212– 229. Li, W., Zhu, X., and Wu, S. (2006a). A novel approach to fast medical image fusion based on lifting wavelet transform. The Sixth World Congress on Intelligent Control and Automation, 2006. WCICA 2006, 9881– 9884(2). Li, X., Tian, X., Sun, Y., and Tang, Z. (2006b). Medical image fusion by multi-resolution analysis of wavelets transform. In Wavelet Analysis and Applications, Tao, Q., Mang 1st, V., and X. Yuesheng (eds). Springer, Cham, Switzerland. Li, B., Tian, L., Kang, Y., and Yu, X. (2008). Parallel multimodal medical image fusion in 3D conformal radiotherapy treatment planning. The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008, 2600– 2604. Li, Y., He, D., Chen, N., Lv, T., Wu, A., Lin, Z., Ding, Z., Wang, Z., and Wu, L. (2018). Optimal axis for lumbosacral interbody fusion: Prospective finite element analysis and retrospective 3D-CT measurement. Clinical Anatomy, 32(3), 337– 347. Lin, Y., Ma, L., Zhu, Y., Lin, Z., Yao, Z., Zhang, Y., and Mao, C. (2017). Assessment of fracture risk in proximal tibia with tumorous bone defects by a finite element method. Microscopy Research and Technique, 80(9), 975– 984. Linguraru, M.G., Pura, J.A., Chowdhury, A.S., and Summers, R.M. (2010). Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, T. Jiang, N. Navab, J.P.W. Pluim, and M.A. Viergever (eds). Springer, Beijing, China. Lipphaus, A. and Witzel, U. (2018). Finite-element syntheses of callus and bone remodeling: Biomechanical study of fracture healing in long bones. The Anatomical Record, 301(12), 2112– 2212. Liu, Y., Zhang, D., Lu, G., and Ma, W.-Y. (2007). A surve" @default.
- W4211241605 created "2022-02-13" @default.
- W4211241605 date "2019-12-09" @default.
- W4211241605 modified "2023-10-12" @default.
- W4211241605 title "References" @default.
- W4211241605 cites W1482551450 @default.
- W4211241605 cites W1490122196 @default.
- W4211241605 cites W1496356183 @default.
- W4211241605 cites W1512908228 @default.
- W4211241605 cites W1514154248 @default.
- W4211241605 cites W1544303972 @default.
- W4211241605 cites W1547035658 @default.
- W4211241605 cites W1554651806 @default.
- W4211241605 cites W1554951798 @default.
- W4211241605 cites W1560814374 @default.
- W4211241605 cites W1568402089 @default.
- W4211241605 cites W1593426002 @default.
- W4211241605 cites W1595941484 @default.
- W4211241605 cites W1600107057 @default.
- W4211241605 cites W1601512961 @default.
- W4211241605 cites W1635332130 @default.
- W4211241605 cites W1640149059 @default.
- W4211241605 cites W1802959161 @default.
- W4211241605 cites W1863651598 @default.
- W4211241605 cites W1874027545 @default.
- W4211241605 cites W1882751776 @default.
- W4211241605 cites W1889537586 @default.
- W4211241605 cites W1959680556 @default.
- W4211241605 cites W1964048916 @default.
- W4211241605 cites W1964209012 @default.
- W4211241605 cites W1965940698 @default.
- W4211241605 cites W1966577389 @default.
- W4211241605 cites W1971014006 @default.
- W4211241605 cites W1976015161 @default.
- W4211241605 cites W1976507051 @default.
- W4211241605 cites W1977946246 @default.
- W4211241605 cites W1979632906 @default.
- W4211241605 cites W1986231131 @default.
- W4211241605 cites W1987631989 @default.
- W4211241605 cites W1991113069 @default.
- W4211241605 cites W2000901391 @default.
- W4211241605 cites W2001125995 @default.
- W4211241605 cites W2012554041 @default.
- W4211241605 cites W2012846365 @default.
- W4211241605 cites W2014957497 @default.
- W4211241605 cites W2016622085 @default.
- W4211241605 cites W2017536984 @default.
- W4211241605 cites W2024926318 @default.
- W4211241605 cites W2027616583 @default.
- W4211241605 cites W2028212466 @default.
- W4211241605 cites W2030614724 @default.
- W4211241605 cites W2037412765 @default.
- W4211241605 cites W2037946990 @default.
- W4211241605 cites W2038952578 @default.
- W4211241605 cites W2044867573 @default.
- W4211241605 cites W2046076702 @default.
- W4211241605 cites W2046589280 @default.
- W4211241605 cites W2047114522 @default.
- W4211241605 cites W2047278939 @default.
- W4211241605 cites W2048156613 @default.
- W4211241605 cites W2050587558 @default.
- W4211241605 cites W2055127655 @default.
- W4211241605 cites W2057763179 @default.
- W4211241605 cites W2057920291 @default.
- W4211241605 cites W2059925738 @default.
- W4211241605 cites W2060231974 @default.
- W4211241605 cites W2066594510 @default.
- W4211241605 cites W2066791851 @default.
- W4211241605 cites W2070849786 @default.
- W4211241605 cites W2072139267 @default.
- W4211241605 cites W2074709600 @default.
- W4211241605 cites W2078206416 @default.
- W4211241605 cites W2081648538 @default.
- W4211241605 cites W2082215259 @default.
- W4211241605 cites W2094264132 @default.
- W4211241605 cites W2095098995 @default.
- W4211241605 cites W2102152908 @default.
- W4211241605 cites W2103520707 @default.
- W4211241605 cites W2104095591 @default.
- W4211241605 cites W2104600109 @default.
- W4211241605 cites W2105820087 @default.
- W4211241605 cites W2106547581 @default.
- W4211241605 cites W2106725364 @default.
- W4211241605 cites W2108901096 @default.
- W4211241605 cites W2112549436 @default.
- W4211241605 cites W2113180829 @default.
- W4211241605 cites W2113523811 @default.
- W4211241605 cites W2114487471 @default.
- W4211241605 cites W2116040950 @default.
- W4211241605 cites W2116162938 @default.
- W4211241605 cites W2117926341 @default.
- W4211241605 cites W2119519779 @default.
- W4211241605 cites W2119816609 @default.
- W4211241605 cites W2123711773 @default.
- W4211241605 cites W2123813753 @default.
- W4211241605 cites W2126980255 @default.
- W4211241605 cites W2129488938 @default.
- W4211241605 cites W2129760464 @default.