Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211249915> ?p ?o ?g. }
- W4211249915 endingPage "238" @default.
- W4211249915 startingPage "229" @default.
- W4211249915 abstract "Free Access References Mark Ainsworth, Mark AinsworthSearch for more papers by this authorJ. Tinsley Oden, J. Tinsley OdenSearch for more papers by this author Book Author(s):Mark Ainsworth, Mark AinsworthSearch for more papers by this authorJ. Tinsley Oden, J. Tinsley OdenSearch for more papers by this author First published: 21 August 2000 https://doi.org/10.1002/9781118032824.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References B. Achchab and J.F. Maitre. Estimate of the constant in two strengthened Cauchy Schwarz Buniakowsky inequalities for FEM systems of two dimensional elasticity-application to multilevel methods and a-posteriori error estimators. Num. Lin. Alg. with Applic., 3(2): 147– 159, 1996. M. Ainsworth. The performance of Bank-Weiser's error estimator for quadrilateral finite elements. Numer. Methods PDE., 10: 609– 623, 1994. M. Ainsworth. The influence and selection of subspaces for a posteriori error estimators. Numer. Math., 73: 399– 418, 1996. M. Ainsworth. Identification and a posteriori estimation of pollution errors in finite element analysis. Comput. Methods Appl. Mech. Engrg., 176: 3– 17, 1999. M. Ainsworth and I. Babuška. Reliable and robust a posteriori error estimation for singularly perturbed reaction diffusion problems. SIAM J. Numer. Anal., 36(2): 331– 353, 1999. M. Ainsworth and A.W. Craig. A posteriori error estimators in the finite element method. Numer. Math., 60: 429– 463, 1991. M. Ainsworth, L. Demkowicz, and C. Kim. The equilibrated residual method for a posteriori error estimation on one-irregular hp-finite element meshes in two dimensions. Preprint, 2000. M. Ainsworth and J.T. Oden. A procedure for a posteriori error estimation for h-p finite element methods. Comput. Methods Appl. Mech. Engrg., 101: 73– 96, 1992. M. Ainsworth and J.T. Oden. A posteriori error estimators for second order elliptic systems. Part 1: Theoretical foundations and a posteriori error analysis. Comput. Math. Appl., 25: 101– 113, 1993. M. Ainsworth and J.T. Oden. A posteriori error estimators for second order elliptic systems. Part 2: An optimal order process for calculating self equilibrating fluxes. Comput. Math. Appl., 26: 75– 87, 1993. M. Ainsworth and J.T. Oden. A unified approach to a posteriori error estimation based on element residual methods. Numer. Math., 65: 23– 50, 1993. M. Ainsworth and J.T. Oden. A posteriori error estimates for Stokes' and Oseen's equations. SIAM J. Numer. Anal., 34(1): 228– 245, February 1997. M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg., 142(1–2): 1– 88, 1997. M. Ainsworth and B. Senior. Aspects of an adaptive hp-finite element method: Adaptive strategy, conforming approximation and efficient solvers. Comput. Methods Appl. Mech. Engrg., 150: 65– 87, 1997. M. Ainsworth and B. Senior. hp-finite element procedures on nonuniform geometric meshes: Adaptivity and constrained approximation. In M.W. Bern, J.E. Flaherty, and M. Luskin, editors, Grid Generation and Adaptive Algorithms, volume 113, pages 1– 29. IMA, Minnesota, 1999. I. Babuška and A. Miller. The post-processing approach in the finite element method. Part 1. Calculation of displacements, stresses and other higher derivatives of the displacements. Internat. J. Numer. Methods Engrg., 20: 1085– 1109, 1984. I. Babuška and A. Miller. The post-processing approach in the finite element method. Part 2. The calculation of stress intensity factors. Internat. J. Numer. Methods Engrg., 20: 1111– 1129, 1984. I. Babuška and A. Miller. The post-processing approach in the finite element method. Part 3. A posteriori error estimates and adaptive mesh selection. Internat. J. Numer. Methods Engrg., 20: 2311– 2324, 1984. I. Babuška and A. Miller. A feedback finite element method with a posteriori error estimation Part 1. Comput. Methods Appl. Mech. Engrg., 61: 1– 40, 1987. I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 18: 736– 754, 1978. I. Babuška and W. C. Rheinboldt. A posteriori error analysis of finite element solutions for one dimensional problems. SIAM J. Numer. Anal., 18: 565– 589, 1981. I. Babuška and W.C. Rheinboldt. A posteriori error estimates for the finite element method. Internat. J. Numer. Methods Engrg., 12: 1597– 1615, 1978. I. Babuška and W.C. Rheinboldt. Adaptive approaches and reliability estimations in finite element analysis. Comput. Methods Appl. Mech. Engrg., 17: 519– 540, 1979. I. Babuška and W.C. Rheinboldt. Analysis of optimal finite element meshes in R1. Math. Comp., 33: 435– 463, 1979. I. Babuška, T. Strouboulis, S.K. Gangaraj, K. Copps, and D.K. Datta. A posteriori estimation of the error in the error estimate. In Ladevèze and Oden [78], pages 155– 198. I. Babuška, T. Strouboulis, S.K. Gangaraj, and C.S. Upadhyay. Eta percent superconvergence in the interior of locally refined meshes of quadrilaterals-superconvergence of the gradient in finite element solutions of Laplace and Poisson equations. Appl. Numer. Math., 16(1–2): 3– 49, 1994. I. Babuška, T. Strouboulis, S.K. Gangaraj, and C.S. Upadhyay. Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives. Comput. Methods Appl. Mech. Engrg., 140(1–2): 1– 37, 1997. I. Babuška, T. Strouboulis, and C.S. Upadhyay. Eta percent superconvergence of finite element approximations in the interior of general meshes of triangles. Comput. Methods Appl. Mech. Engrg., 122(3–4): 273– 305, 1995. I. Babuška, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj. A model study of the quality of a posteriori estimators for linear elliptic problems error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg., 114: 307– 378, 1994. I. Babuška, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj. A posteriori estimation and adaptive-control of the pollution error in the h-version of the finite-element method. Internat. J. Numer. Methods Engrg., 38(24): 4207– 4235, 1995. I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj, and K. Copps. Validation of a posteriori error estimators by a numerical approach. Internat. J. Numer. Methods Engrg., 37: 1073– 1123, 1994. I. Babuška, O.C. Zienkiewicz, J. Gago, and E.A. Oliveira. Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Wiley, 1986. R. Bank and B.D. Welfert. A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal., 28: 591– 623, 1991. R.E. Bank. Analysis of a local a posteriori error estimat for elliptic equations. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations [32], pages 119– 128. R.E. Bank. Hierarchical bases and the finite element method. Acta Numerica, 5: 1– 45, 1996. R.E. Bank and R.K. Smith. A posteriori error-estimates based on hierarchical bases. SIAM J. Numer. Anal., 30(4): 921– 935, 1993. R.E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math. Comp., 44: 283– 301, 1985. J. Baranger and H. El-Amri. Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens. RAIRO Anal. Numér., 25: 31– 48, 1991. J. Bergh and J. Löfström. Interpolation Spaces: An introduction. Springer-Verlag, 1976. C. Bernardi and V. Girault. A local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal., 35(5): 1893– 1916, October 1998. F. Bornemann and H. Yserentant. A basic norm equivalence in the theory of multilevel methods. Numer. Math., 64(4): 455– 476, 1993. F.A. Bornemann, B. Erdmann, and R. Kornhuber. A-posteriori error-estimates for elliptic problems in 2 and 3 space dimensions. SIAM J. Numer. Anal., 33(3): 1188– 1204, 1996. B. Braess and R. Verfürth. Posteriori error estimators for the Raviart Thomas element. SIAM J. Numer. Anal., 33(6): 2431– 2444, 1996. D. Braess. The contraction number of a multigrid method for solving the Poisson equation. Numer. Math., 37: 387– 404, 1981. S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994. J.C. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Wiley-Interscience. John Wiley & Sons, 1987. T. Cao, D.W. Kelly, and I.H. Sloan. Local error bounds for post-processed finite element calculations. Internat. J. Numer. Methods Engrg., 45(8): 1085– 1098, 1999. C. Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66(218): 465– 476, 1997. C. Carstensen and G. Dolzmann. A posteriori error estimates for mixed finite element method in elasticity. Numer. Math., 81(2): 187– 209, 1998. P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978. P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér., 2: 77– 84, 1975. B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In Zienkiewicz and Holister, editors, Stress Analysis. Wiley London, 1965. L. Demkowicz, Ph. Devloo, and J.T. Oden. On an h-type mesh refinement strategy based on minimization of interpolation errors. Comput. Methods Appl. Mech. Engrg., 53: 67– 89, 1985. L. Demkowicz, J.T. Oden, W. Rachowicz, and O. Hardy. Toward a universal hp-adaptive finite element strategy. Part 1: Constrained approximation and data structure. Comput. Methods Appl. Mech. Engrg., 77: 79– 112, 1989. L. Demkowicz, J.T. Oden, and T. Strouboulis. Adaptive finite elements for flow problems with moving boundaries. Part 1: Variational principles and a posteriori error estimates. Comput. Methods Appl. Mech. Engrg., 46: 217– 251, 1984. L. Demkowicz, J.T. Oden, and T. Strouboulis. An adaptive p-version finite element method for transient flow problems with moving boundaries. In R.H. Gallagher, editor, Finite Elements in Fluids VI, pages 291– 305. John Wiley, 1985. P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical finite element code. IMPACT of Comput. in Sci. and Eng., 1: 3– 35, 1989. W. Dörfler. A robust adaptive strategy for the nonlinear Poisson equation. Computing, 55(4): 289– 304, 1995. W. Dörfler. A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal., 33(3): 1106– 1124, 1996. T.F. Dupont and L.R. Scott. Polynomial approximation of functions in sobolev spaces. Math. Comp., 1980: 441–463, 34. R. Duran, E.A. Dari, and C. Padra. Maximum norm error estimators for three dimensional elliptic problems. SIAM J. Numer. Anal., 37(2): 683– 700, 2000. R. Duran and R. Rodriguez. On the asymptotic exactness of Bank-Weiser's estimator. Numer. Math., 62: 297– 304, 1992. V. Eijkhout and P. Vassilevski. The role of the strengthened Cauchy-Buniakowskii-Schwarz inequality in multilevel methods. SIAM Rev., 33(3): 405– 419, 1991. K. Eriksson and C. Johnson. Error-estimates and automatic time step control for nonlinear parabolic problems. Part 1. SIAM J. Numer. Anal., 24(1): 12– 23, 1987. K. Eriksson and C. Johnson. Adaptive finite-element methods for parabolic problems. Part 1: A linear-model problem. SIAM J. Numer. Anal., 28(1): 43– 77, 1991. K. Eriksson and C. Johnson. Adaptive finite-element methods for parabolic problems. Part 2: Optimal error estimates in L∞L2 and L∞L∞ SIAM J. Numer. Anal., 32(3), 1995. R.E. Ewing. A posteriori error estimation. Comput. Methods Appl. Mech. Engrg., 82(1–3): 59– 72, 1990. V. Girault and P.A. Raviart. Finite Element Methods for Navier Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, 1986. P. Grisvard. Elliptic Problems in Non-smooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman, 1985. E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations, volume 1: Non-stiff problems, volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, 1987. P. Houston, J.A. Mackenzie, E. Suli, and G. Warnecke. A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math., 82(3): 433– 470, 1999. C. Johnson and P. Hansbo. Adaptive finite element methods in computational mechanics. Comput. Methods Appl. Mech. Engrg., 101(1–3): 143– 181, 1992. D.W. Kelly. The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Internat. J. Numer. Methods Engrg., 20: 1491– 1506, 1984. D.W. Kelly, J.R. Gago, O.C. Zienkiewicz, and I. Babuška. A posteriori error analysis and adaptive processes in the finite element method. Part I-Error analysis. Internat. J. Numer. Methods Engrg., 19: 1593– 1619, 1983. D.W. Kelly and J. D. Isles. A procedure for a posteriori error analysis for the finite element method which contains a bounding measure. Comput. Struct., 31: 63– 71, 1989. M. Križek and P. Neitaanmaki. On superconvergence techniques. Acta Applicandae Mathematicae, 9: 175– 198, 1987. P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20: 485– 509, 1983. P. Ladevèze and J.T. Oden, editors. Advances in Adaptive Computational Methods in Mechanics, volume 47, North-Holland, 1998. Elsevier Science Publishers B.V. P. Lesaint and M. Zlamal. Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér., 13: 139– 166, 1979. N. Levine. Superconvergent recovery of the gradient from piecewise linear finite element approximations. IMA J. Numer. Anal., 5(4): 407– 427, 1985. J.L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications-I, volume 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1972. A. Louis. Acceleration of convergence for finite element solutions of the Poisson equation. Numer. Math., 33: 43– 53, 1979. J.F. Maitre and F. Musy. The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems. In Multigrid Methods: Proceedings Cologne 1981, volume 960 of Lecture Notes in Mathematics, pages 535– 544. Springer-Verlag, 1982. R.H. Nochetto. Removing the saturation assumption in finite element analysis. Istit. Lombardo Acad. Sci. Lett. Rend. A, 127: 67– 82, 1993. R.H. Nochetto. Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comp., 64(109): 1– 22, 1995. A. K. Noor and I. Babuška. Quality assessment and control of finite element solutions. Finite Elements and Design, 3: 1– 26, 1987. J.T. Oden and L. Demkowicz. Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations [32], pages 1– 43. J.T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann. Toward a universal hp-adaptive finite element strategy. Part 2: A posteriori error estimation. Comput. Methods Appl. Mech. Engrg., 77: 113– 180, 1989. J.T. Oden, L. Demkowicz, T. Strouboulis, and Ph. Devloo. Adaptive methods for problems in solid and fluid mechanics. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations [32], pages 249– 280. J.T. Oden and Y. Feng. Local and pollution error estimation for finite element approximations of elliptic boundary value problems. J. Comput. Appl. Math., 74: 245– 293, 1996. J.T. Oden and S. Prudhomme. A technique for a posteriori error estimation of h-p approximations of the Stokes equations. In Ladevèze and Oden [78], pages 43– 63. J.T. Oden and S. Prudhomme. Goal oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl., To appear. J.T. Oden and J.N. Reddy. An introduction to the mathematical theory of finite elements. Wiley, 1976. J.T. Oden, W. Wu, and M. Ainsworth. A posteriori error estimators for the Navier-Stokes problem. Comput. Methods Appl. Mech. Engrg., 111: 185– 202, 1994. M. Paraschivoiu, J. Peraire, and A.T. Patera. A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Engrg., 150(1–4): 289– 312, 1997. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz. Adaptive remeshing for compressible flow computations. J. Comp. Phys, 72: 449– 466, 1987. S. Prudhomme and J.T. Oden. On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg., 176(1–4): 313– 331, 1999. R. Rannacher and F.T. Suttmeier. A feed-back approach to error control in finite element methods: Application to linear elasticity. Comput. Mech., 19(5): 434– 446, 1997. R. Rannacher and F.T. Suttmeier. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Engrg., 176(1–4): 333– 361, 1999. U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods, volume 13 of Frontiers in Applied Mathematics. SIAM, 1993. J. Sarrate, J. Peraire, and A. Patera. A posteriori finite element error bounds for non-linear outputs of the Helmholtz equation. Internat. J. Numer. Methods Fluids, 31(1): 17– 36, 1999. L.R. Scott and S. Zhang. Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp., 54: 483– 493, 1992. E.M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970. H.J. Stetter. Analysis of Discretization Methods for Ordinary Differential Equations, volume 23 of Springer Tracts in Natural Philosophy. Springer, 1973. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, volume 12 of Texts in Applied Mathematics. Springer-Verlag, 1993. B. A. Szabo. Estimation and control of error based on p-convergence. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations [32], pages 61– 70. P.S. Vassilevski. On two ways of stabilizing the hierarchical basis multilevel methods. SIAM Rev., 39(1): 18– 53, 1997. P.S. Vassilevski and M.H. Etova. Computation of constants in the strengthened Cauchy inequality for elliptic bilinear-forms with anisotropy. SIAM J. Sci. Comput., 13(3): 655– 665, 1992. R. Verfürth. A posteriori error estimators for the Stokes equations. Numer. Math., 55: 309– 325, 1989. R. Verfürth. A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp., 62: 445– 475, 1994. R. Verfürth. A posteriori error estimation and adaptive mesh refinement techniques. J. Comput. Appl. Math., 50: 67– 83, 1994. R. Verfürth. A review of a posteriori error estimation and adaptive mesh refinement techniques. Wiley-Teubner, 1996. R. Verfürth. Error estimates for some quasi-interpolation operators. RAIRO Modél. Math. Anal. Numér., 33(4): 695– 793, 1999. L.B. Wahlbin. Local behavior in finite element methods. In P.G. Ciarlet and J.L. Lions, editors, Finite Element Methods (Part 1), volume 2 of Handbook of Numerical Analysis, pages 355– 522, North-Holland, 1991. Elsevier Science Publishers B.V. L.B. Wahlbin. Superconvergence in Galerkin Finite Element Methods, volume 1605 of Lecture Notes in Mathematics. Springer-Verlag, 1995. S. Wang, I.H. Sloan, and D.W. Kelly. Computable error bounds for pointwise derivatives of a neumann problem. IMA J. Numer. Anal., 18(2): 251– 271, 1998. H. Yserentant. On the multilevel splitting of finite element spaces. Numer. Math., 49: 379– 412, 1986. E. Zeidler. Non-linear Functional Analysis and Its Applications II/B. Springer-Verlag, 1990. Z. Zhang and J.Z. Zhu. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method. Part 1. Comput. Methods Appl. Mech. Engrg., 123: 173– 187, 1995. Z. Zhang and J.Z. Zhu. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method. Part 2. Comput. Methods Appl. Mech. Engrg., 163: 159– 170, 1998. O.C. Zienkiewicz and J.Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg., 24: 337– 357, 1987. O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Internat. J. Numer. Methods Engrg., 33: 1331– 1364, 1992. O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Internat. J. Numer. Methods Engrg., 33: 1365– 1382, 1992. M. Zlamal. Some superconvergence results in the finite element method. In A. Dold and B. Eckmann, editors, Mathematical Aspects of Finite Element Methods, number 606 in Springer Lecture Notes in Mathematics, 1975. M. Zlamal. Superconvergence and reduced integration in the finite element method. Math. Comp., 32: 663– 685, 1978. A Posteriori Error Estimation in Finite Element Analysis ReferencesRelatedInformation" @default.
- W4211249915 created "2022-02-13" @default.
- W4211249915 date "2000-08-21" @default.
- W4211249915 modified "2023-10-14" @default.
- W4211249915 title "References" @default.
- W4211249915 cites W1966388474 @default.
- W4211249915 cites W1978399516 @default.
- W4211249915 cites W1980964769 @default.
- W4211249915 cites W1982739053 @default.
- W4211249915 cites W1985422345 @default.
- W4211249915 cites W1985629301 @default.
- W4211249915 cites W1986438698 @default.
- W4211249915 cites W1986548881 @default.
- W4211249915 cites W1987521862 @default.
- W4211249915 cites W1989594010 @default.
- W4211249915 cites W1989886614 @default.
- W4211249915 cites W1990941154 @default.
- W4211249915 cites W1992629186 @default.
- W4211249915 cites W1993064848 @default.
- W4211249915 cites W1995404822 @default.
- W4211249915 cites W1995723266 @default.
- W4211249915 cites W1998474074 @default.
- W4211249915 cites W1998674934 @default.
- W4211249915 cites W2001413153 @default.
- W4211249915 cites W2001849333 @default.
- W4211249915 cites W2010431816 @default.
- W4211249915 cites W2010637116 @default.
- W4211249915 cites W2010671956 @default.
- W4211249915 cites W2011884938 @default.
- W4211249915 cites W2015462824 @default.
- W4211249915 cites W2016094849 @default.
- W4211249915 cites W2017472233 @default.
- W4211249915 cites W2020545351 @default.
- W4211249915 cites W2024804984 @default.
- W4211249915 cites W2029348449 @default.
- W4211249915 cites W2030840548 @default.
- W4211249915 cites W2036662518 @default.
- W4211249915 cites W2036867506 @default.
- W4211249915 cites W2038626747 @default.
- W4211249915 cites W2039924562 @default.
- W4211249915 cites W2042128780 @default.
- W4211249915 cites W2044892973 @default.
- W4211249915 cites W2045382809 @default.
- W4211249915 cites W2049782910 @default.
- W4211249915 cites W2050111551 @default.
- W4211249915 cites W2054550262 @default.
- W4211249915 cites W2056027508 @default.
- W4211249915 cites W2059512870 @default.
- W4211249915 cites W2064682864 @default.
- W4211249915 cites W2066450870 @default.
- W4211249915 cites W2066927514 @default.
- W4211249915 cites W2067734800 @default.
- W4211249915 cites W2068954248 @default.
- W4211249915 cites W2073100613 @default.
- W4211249915 cites W2073529350 @default.
- W4211249915 cites W2076458295 @default.
- W4211249915 cites W2077771400 @default.
- W4211249915 cites W2079227383 @default.
- W4211249915 cites W2080139331 @default.
- W4211249915 cites W2080854226 @default.
- W4211249915 cites W2082051696 @default.
- W4211249915 cites W2083054768 @default.
- W4211249915 cites W2086552710 @default.
- W4211249915 cites W2087764189 @default.
- W4211249915 cites W2088831497 @default.
- W4211249915 cites W2090606685 @default.
- W4211249915 cites W2092185402 @default.
- W4211249915 cites W2093538658 @default.
- W4211249915 cites W2093687887 @default.
- W4211249915 cites W2097622080 @default.
- W4211249915 cites W2105372648 @default.
- W4211249915 cites W2105729768 @default.
- W4211249915 cites W2107486537 @default.
- W4211249915 cites W2116696529 @default.
- W4211249915 cites W2122602456 @default.
- W4211249915 cites W2136746407 @default.
- W4211249915 cites W2136746897 @default.
- W4211249915 cites W2147601343 @default.
- W4211249915 cites W2148995993 @default.
- W4211249915 cites W2150140956 @default.
- W4211249915 cites W2158352376 @default.
- W4211249915 cites W2163694039 @default.
- W4211249915 cites W2348717803 @default.
- W4211249915 cites W2381246980 @default.
- W4211249915 cites W2429258439 @default.
- W4211249915 cites W2584559602 @default.
- W4211249915 cites W2586064390 @default.
- W4211249915 cites W265983314 @default.
- W4211249915 cites W3147515309 @default.
- W4211249915 cites W3209416867 @default.
- W4211249915 cites W4205180919 @default.
- W4211249915 cites W4211122385 @default.
- W4211249915 cites W4230989996 @default.
- W4211249915 cites W4242464733 @default.
- W4211249915 cites W4252104256 @default.
- W4211249915 cites W4253840677 @default.
- W4211249915 cites W4292166829 @default.
- W4211249915 cites W4298334204 @default.