Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211254927> ?p ?o ?g. }
- W4211254927 endingPage "249" @default.
- W4211254927 startingPage "243" @default.
- W4211254927 abstract "Free Access Bibliography Giorgio Celant, Giorgio CelantSearch for more papers by this authorMichel Broniatowski, Michel BroniatowskiSearch for more papers by this author Book Author(s):Giorgio Celant, Giorgio CelantSearch for more papers by this authorMichel Broniatowski, Michel BroniatowskiSearch for more papers by this author First published: 01 April 2016 https://doi.org/10.1002/9781119292272.biblio AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat Bibliography Achieser N.I., Theory of Approximation, Dover Publications Inc., New York, 1992. Anderson T.W., “The choice of the degree of a polynomial regression as a multiple decision problem”, Ann. Math. Statist., vol. 33, pp. 255– 265, 1962. Atkinson A.C., Donev A.N., Tobias R.D., Optimum Experimental Designs, with SAS, Oxford University Press, Oxford, 2007. Bartroff J., “A new characterization of Elfving's method for high dimensional computation”, J. Statist. Plann. Inference, vol. 142, no. 4, pp. 863– 871, 2012. Bazaraa M.S., Sherali H.D., Shetty C.M., Nonlinear Programming, 3rd ed., John Wiley & Sons, Hoboken, NJ, 2006. Bernstein S., “Quelques remarques sur l'interpolation”, Math. Ann., vol. 79, nos. 1–2, pp. 1– 12, 1918. M.P.F. Berger, W. Wong (eds.), Applied Optimal Designs, John Wiley & Sons, Chichester, 2005. Bogle I. D.L., Žilinskas J. (eds.), Computer Aided Methods in Optimal Design and Operations, World Scientific Publishing Co., 2006. de Boor C., Rice J.R., “Extremal polynomials with application to Richardson iteration for indefinite linear systems”, SIAM J. Sci. Statist. Comput., vol. 3, no. 1, pp. 47– 57, 1982. Box G.E.P., Lucas H.L., “Design of experiments in non-linear situations”, Biometrika, vol. 46, no. 1/2, pp. 77– 90, 1959. Bratti G., Breviario di Analisi Matematica, Librenia Progetto Padova, 1998. Broniatowski M., Celant G., “Optimality and bias of some interpolation and extrapolation designs”, J. Statist. Plann. Inference, vol. 137, no. 3, pp. 858– 868, 2007. Broniatowski M., Celant G., Di Battista M. et al., “Upper bounds for the error in some interpolation and extrapolation designs”, Comm. Statist. Theory Methods, vol. 41, nos. 16–17, pp. 3002– 3019, 2012. Broniatowski M., Celant G., “Some overview on unbiased interpolation and extrapolation designs”, Publ. Inst. Stat.Univ. Paris, vol. 58, no. 3, pp. 27– 60, 2014. Brutman L., “Lebesgue functions for polynomial interpolation—a survey”, Ann. Numer. Math., vol. 4, nos. 1–4, pp. 111– 127, 1997. Bryan B.Y.M., Linear Functional Analysis, Springer, 2008. Celant G., “Extrapolation and optimal designs for accelerated runs”, Ann. I.S.U.P., vol. 47, no. 3, pp. 51– 84, 2003. Cela A., Ben Gaid M., Li X.-G. et al., Optimal Design of Distributed Control and Embedded Systems, Springer, 2014. Chernoff H., “Locally optimal designs for estimating parameters”, Ann. Math. Statistics, vol. 24, pp. 586– 602, 1953. Chernoff H., “Gustav Elfving's impact on experimental design”, Statist. Sci., vol. 14, no. 2, pp. 201– 205, 1999. Coatmélec C., “Approximation et interpolation des fonctions différentiables de plusieurs variables”, Ann. Sci. École Norm. Sup., vol. 83, pp. 271– 341, 1966. Dette H., “Bayesian D-optimal and model robust designs in linear regression models”, Statistics, vol. 25, no. 1, pp. 27– 46, 1993. Dette H., Studden W., “Optimal designs for polynomial regression when the degree is not known”, Statist. Sinica, vol. 5, no. 2, pp. 459– 473, 1995. Dette H., Wong W.K., “Robust optimal extrapolation designs”, Biometrika, vol. 83, no. 3, pp. 667– 680, 1996. Dette H., Holland-Letz T., “A geometric characterization of c-optimal designs for heteroscedastic regression”, Ann. Statist., vol. 37, no. 6B, pp. 4088– 4103, 2009. Downton F., “Least-squares estimates using ordered observations”, Ann. Math. Statistics, vol. 25, pp. 303– 316, 1954. Dzyadyk V.K., Shevchuk I.A., Theory of Uniform Approximation of Functions by Polynomials, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. Ehlich H., Zeller K., “Numerische Abschätzung von Polynomen”, Z. Angew. Math. Mech., vol. 45, pp. T20– T22, 1965. Ehrenfeld S., “On the efficiency of experimental designs”, Ann. Math. Statist., vol. 26, pp. 247– 255, 1955. Elfving G., “Optimum allocation in linear regression theory”, Ann. Math. Statistics, vol. 23, pp. 255– 262, 1952. Elfving G., “Geometric allocation theory”, Skand. Aktuarietidskr., vol. 37, pp. 170– 190, 1954. Erdos P., “On some convergence properties of the interpolation polynomials”, Ann. of Math., vol. 44, pp. 330– 337, 1943. Erdos P., “Problems and results on the theory of interpolation. I”, Acta Math. Acad. Sci. Hungarly, vol. 9, pp. 381– 388, 1958. Erdos P., “Problems and results on the theory of interpolation. II”, Acta Math. Acad. Sci. Hungary, vol. 12, pp. 235– 244, 1961. Erdos P., Vértesi P., “On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes”, Acta Math. Acad. Sci. Hungary, vol. 36, nos. 1–2, pp. 71– 89, 1980. Erdos P., Vértesi P., “Correction of some misprints in our paper: “On almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes””, Acta Math. Acad. Sci. Hungary, vol. 38, nos. 1–4, p. 263, 1981. Faber G., “Uber die interpolatorische Darstellung stetiger Funktionen”, Jahresber. Deutt. Math. Verein, pp. 192– 210, 1914. Fang Z., Robust extrapolation designs for linear models, Thesis, University of Alberts, Canada, 1999. Fang Z., Wiens D.P., “Robust extrapolation designs and weights for biased regression models with heteroscedastic errors”, Canad. J. Statist., vol. 27, no. 4, pp. 751– 770, 1999. Fang Z., “Robust extrapolation designs for biased polynomial models”, J. Statist. Plann. Inference, vol. 87, no. 1, pp. 135– 147, 2000. Fan S.K., Chaloner K., “A geometric method for singular c-optimal designs”, J. Statist. Plann. Inference, vol. 113, no. 1, pp. 249– 257, 2003. Fang Z., “Extrapolation designs with constraints”, Canad. J. Statist., vol. 31, no. 4, pp. 457– 468, 2003. Fedorov V.V., Malyutov M.B., “Optimal designs in regression problems”, Math. Operationsforsch. Statist., vol. 3, no. 4, pp. 281– 308, 1972. Fellman J., “Gustav Elfving's contribution to the emergence of the optimal experimental design theory”, Statist. Sci., vol. 14, no. 2, pp. 197– 200, 1999. Fidalgo L., Diaz R., “ Elfving's method for m-dimensional models”, Metrika, 2004. Galil Z., Kiefer J., “Extrapolation designs and Φp-optimum designs for cubic regression on the q-ball”, J. Statist. Plann. Inference, vol. 3, no. 1, pp. 27– 38, 1979. de la Garza A., “Spacing of information in polynomial regression”, Ann. Math. Statistics, vol. 25, pp. 123– 130, 1954. Geronimo J.S., Van Assche W., “Orthogonal polynomials on several intervals via a polynomial mapping”, Trans. Amer. Math. Soc., vol. 308, no. 2, pp. 559– 581, 1988. Guest P.G., “The spacing of observations in polynomial regression”, Ann. Math. Statist., vol. 29, pp. 294– 299, 1958. Günttner R., “Evaluation of Lebesgue constants”, SIAM J. Numer. Anal., vol. 17, no. 4, pp. 512– 520, 1980. Herzberg A., Cox D.R., “Some optimal designs for interpolation and extrapolation”, Biometrika, vol. 59, pp. 551– 561, 1972. Hildebrand F.B., Introduction to Numerical Analysis, McGraw-Hill, 1956. Hoel P., “Efficiency problems in polynomial estimation”, Ann. Math. Statist., vol. 29, pp. 1134– 1145, 1958. Hoel P., “Some properties of optimal spacing in polynomial estimation”, Ann. Inst. Statist. Math., vol. 13, pp. 1– 8, 1961/1962. Hoel P., Levine A., “Optimal spacing and weighting in polynomial prediction”, Ann. Math. Statist., vol. 35, pp. 1553– 1560, 1964. Hoel P., “Minimax designs in two dimensional regression”, Ann. Math. Statist., vol. 36, pp. 1097– 1106, 1965. Hoel P., “Optimum designs for polynomial extrapolation”, Ann. Math. Statist., vol. 36, pp. 1483– 1493, 1965. Hoel P., “A simple solution for optimal Chebyshev regression extrapolation”, Ann. Math. Statist., vol. 37, pp. 720– 725, 1966. Hoel P., “Regression systems for which optimal extrapolation designs require exactly k + 1 points”, Ann. Statist., vol. 9, no. 4, pp. 909– 912, 1981. Huang M., Studden W.J., “Model robust extrapolation designs”, J. Statist. Plann. Inference, vol. 18, no. 1, pp. 1– 24, 1988. Isaacson E., Keller H.B., Analysis of Numerical Methods, Dover Publications Inc., New York, 1994. Johnson L.W., Riess R.D., Numerical Analysis, 2nd ed., Addison-Wesley Publishing Co., Reading, MA, 1982. Kammerer W., “Polynomial approximations to finitely oscillating functions”, Math. Comp., vol. 15, pp. 115– 119, 1961. Karlin S., Studden W.J., Tchebycheff Systems: Applications in Analysis and Statistics, John Wiley & Sons, New, 1966. Kiefer J., “On the nonrandomized optimality and randomized nonoptimality of symmetrical designs”, Ann. Math. Statist., vol. 29, pp. 675– 699, 1958. Kiefer J., Wolfowitz J., “Optimum designs in regression problems”, Ann. Math. Statist., vol. 30, pp. 271– 294, 1959. Kiefer J., Wolfowitz J., “The equivalence of two extremum problems”, Canad. J. Math., vol. 12, pp. 363– 366, 1960. Kiefer J., Wolfowitz J., “Optimum extrapolation and interpolation designs”, Ann. Inst. Statist. Math., vol. 16, pp. 295– 303, 1964. Kiefer J., Wolfowitz J., “On a theorem of Hoel and Levine on extrapolation designs”, Ann. Math. Statist., vol. 36, pp. 1627– 1655, 1965. Kiefer J., “General equivalence theory for optimum designs (approximate theory)”, Ann. Statist., vol. 2, pp. 849– 879, 1974. Kolmogorov A., Fomine S., Tihomirov V.M., Eléments de la théorie des fonctions et de l'analyse fonctionnelle, Mir Publishers, Moscow, 1974. Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moscow, 1981. Lebedev V.I., “Iteration methods for the solution of operator equations with a spectrum that lies on several intervals”, USSR Compt. Math. and Math Phys., vol 9, pp. 17– 24, 1969. Lefèvre V., Arithmétique flottante, INRIA, Report no. RR-5105, 2004. Levine A., “A problem in minimax variance polynomial extrapolation”, Ann. Math. Statist., vol. 37, pp. 898– 903, 1966. Lloyd E.H., “On the estimation of variance and covariance”, Proc. Roy. Soc. Edinburgh. Sect. A., vol. 63, pp. 280– 289, 1952. Luttmann F.W., Rivlin T.J., “Some numerical experiments in the theory of polynomial interpolation”, IBM J. Res. Develop., vol. 9, pp. 187– 191, 1965. Melas V., Functional Approach to Optimal Experimental Design, Springer, New York, 2006. Mitchell T., “An algorithm for the construction of D-optimal experimental designs”, Technometrics, vol. 16, pp. 203– 210, 1974. Müller C.H., Robust Planning and Analysis of Experiments, Springer-Verlag, New York, 1997. Nordstrom K., “The life and work of Gustav Elfving”, Statist. Sci., vol. 14, no. 2, pp. 174– 196, 1999. Pázman A., Foundations of Optimum Experimental Design, D. Reidel Publishing Co., Dordrecht, 1986. Peherstorfer F., Schiefermayr K., “Description of extremal polynomials on several intervals and their computation”, Acta Math. Hungar., vol. 83, nos. 1–2, pp. 27– 58, 59–83, 1999. Peherstorfer F., “Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping”, J. Approx. Theory, vol. 111, no. 2, pp. 180– 195, 2001. Peherstorfer F., “Zeros of polynomials orthogonal on several intervals”, Int. Math. Res. Not., no. 7, pp. 361– 385, 2003. Peherstorfer F., “Extremal problems of Chebyshev type”, Proc. Amer. Math. Soc., vol. 137, no. 7, pp. 2351– 2361, 2009. Peherstorfer F., “Orthogonal polynomials on several intervals: accumulation points of recurrence coefficients and of zeros”, J. Approx. Theory, vol. 163, no. 7, pp. 814– 837, 2011. Pronzato L., Pázman A., Design of Experiments in Nonlinear Models, Springer, New York, 2013. Pukelsheim F., Optimal Design of Experiments, John Wiley & Sons Inc., New York, 1993. Quarteroni A., Sacco R., Saleri F., Numerical Mathematics, 2nd ed., Springer-Verlag, Berlin 2007. Rice J.R., The Approximation of Functions. Vol. I: Linear theory, Addison-Wesley Publishing Co., Reading, MA, 1964. Rivlin T., The Chebyshev Polynomials, John Wiley & Sons, New York, 1974. Sansone G., Orthogonal Functions, Dover Publications Inc., New York, 1991. Sauer F.W., “Algorithm 604. A FORTRAN program for the calculation of an extremal polynomial”, ACM Trans. Math. Software, vol. 9, no. 3, pp. 381– 383, 1983. Schwabe R., Optimum Designs for Multi-Factor Models, Springer-Verlag, New York, 1996. Silvey S.D., Optimal Design, Chapman & Hall, London, 1980. Smith K., “On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations”, Biometrika, vol. 12, no. 1/2, pp 1– 85, 1918. Spruill C., “Optimal designs for minimax extrapolation”, J. Multivariate Anal., vol. 15, no. 1, pp. 52– 62, 1984. Spruill C., “Model robustness of Hoel-Levine optimal designs”, J. Statist. Plann. Inference, vol. 11, no. 2, pp. 217– 225, 1985. Spruill C., Optimal Experimental Designs, Technical Report Georgia Institute of Technology, DMS 8401, 1986. Spruill C., “Optimal designs for interpolation”, J. Statist. Plann. Inference, vol. 16, no. 2, pp. 219– 229, 1987. Spruill C., “Optimal extrapolation of derivatives”, Metrika, vol. 34, no. 1, pp. 45– 60, 1987. Spruill C., “Good designs for polynomial extrapolation”, J. Statist. Plann. Inference, vol. 26, no. 2, pp. 149– 159, 1990. Stidham JR. S., Optimal Design of Queueing Systems, CRC Press, Boca Raton, FL, 2009. Studden W.J., “Optimal designs on Tchebycheff points”, Ann. Math. Statist, vol. 39, pp. 1435– 1447, 1968. Studden W.J., “Elfving's theorem and optimal designs for quadratic loss”, Ann. Math. Statist., vol. 42, pp. 1613– 1621, 1971. Studden W.J., Tsay J., “Remez's procedure for finding optimal designs”, Ann. Statist., vol. 4, no. 6, pp. 1271– 1279, 1976. Szegő G., Orthogonal Polynomials, 4th ed., Colloquium Publications, 1975. Titterington D.M., “A method of extremum adaptation”, J. Inst. Math. Appl., vol. 11, pp. 297– 315, 1973. Totik V., “The norm of minimal polynomials on several intervals”, J. Approx. Theory, vol. 163, no. 6, pp. 738– 746, 2011. Vértesi P., “Optimal Lebesgue constant for Lagrange interpolation”, SIAM J. Numer. Anal., vol. 27, no. 5, pp. 1322– 1331, 1990. Vitali G., Sansone G., Moderna teoria delle funzioni di variabile reale, 3rd ed., Nicola Zanichelli, Bologna, 1951. Wald A., “On the efficient design of statistical investigations”, Ann. Math. Statistics, vol. 14, pp. 134– 140, 1943. Whittle P., “Some general points in the theory of optimal experimental design”, J. Roy. Statist. Soc. Ser. B, vol. 35, pp. 123– 130, 1973. Wiens D.P., XU X., “Robust prediction and extrapolation designs for misspecified generalized linear regression models”, J. Statist. Plann. Inference, vol. 138, no. 1, pp. 30– 46, 2008. Wu C., Wynn H.P., “The convergence of general step-length algorithms for regular optimum design criteria”, Ann. Statist., vol. 6, no. 6, pp. 1273– 1285, 1978. Wynn H.P., “The sequential generation of D-optimum experimental designs”, Ann. Math. Statist., vol. 41, pp. 1655– 1664, 1970. Wynn H.P., “Results in the theory and construction of D-optimum experimental designs”, J. Roy. Statist. Soc. Ser. B, vol. 34, pp. 133– 147, 170–186, 1972. Wynn H.P., “ Simple conditions for optimum design algorithms”, (Proc. Internat. Sympos., Colorado State Univ., Ft. Collins, Colo.), pp. 571– 579, North-Holland, Amsterdam, 1975. Xu X., Robust prediction and extrapolation designs, with applications to accelerated life testing, PhD Thesis, University of Alberta, Canada, 2006. Xu X., “Robust prediction and extrapolation designs for censored data”, J. Statist. Plann. Inference, vol. 139, no. 2, pp. 486– 502, 2009. Xu X., Chen A., “Robust prediction and extrapolation designs for nonlinear regression with imprecision”, Metron, vol. 72, no. 1, pp. 25– 44, 2014. Interpolation and Extrapolation Optimal Designs 1: Polynomial Regression and Approximation Theory ReferencesRelatedInformation" @default.
- W4211254927 created "2022-02-13" @default.
- W4211254927 date "2016-04-01" @default.
- W4211254927 modified "2023-10-12" @default.
- W4211254927 title "Bibliography" @default.
- W4211254927 cites W1484357588 @default.
- W4211254927 cites W1534658474 @default.
- W4211254927 cites W1578421288 @default.
- W4211254927 cites W1590668187 @default.
- W4211254927 cites W1892186123 @default.
- W4211254927 cites W1966652289 @default.
- W4211254927 cites W1967403261 @default.
- W4211254927 cites W1968753560 @default.
- W4211254927 cites W1968867201 @default.
- W4211254927 cites W1971618758 @default.
- W4211254927 cites W1972371196 @default.
- W4211254927 cites W1975745878 @default.
- W4211254927 cites W1979204363 @default.
- W4211254927 cites W1993097953 @default.
- W4211254927 cites W2004995810 @default.
- W4211254927 cites W2005210444 @default.
- W4211254927 cites W2008727735 @default.
- W4211254927 cites W2013299036 @default.
- W4211254927 cites W2017351261 @default.
- W4211254927 cites W2021524614 @default.
- W4211254927 cites W2022044408 @default.
- W4211254927 cites W2025000506 @default.
- W4211254927 cites W2025112417 @default.
- W4211254927 cites W2027102258 @default.
- W4211254927 cites W2029376565 @default.
- W4211254927 cites W2030468176 @default.
- W4211254927 cites W2033321740 @default.
- W4211254927 cites W2034735071 @default.
- W4211254927 cites W2036277012 @default.
- W4211254927 cites W2038120787 @default.
- W4211254927 cites W2040406273 @default.
- W4211254927 cites W2041202539 @default.
- W4211254927 cites W2043969818 @default.
- W4211254927 cites W2045735836 @default.
- W4211254927 cites W2049332568 @default.
- W4211254927 cites W2050045463 @default.
- W4211254927 cites W2050190695 @default.
- W4211254927 cites W2051453094 @default.
- W4211254927 cites W2053344852 @default.
- W4211254927 cites W2056292793 @default.
- W4211254927 cites W2057872514 @default.
- W4211254927 cites W2059126749 @default.
- W4211254927 cites W2064868327 @default.
- W4211254927 cites W2070017109 @default.
- W4211254927 cites W2072009631 @default.
- W4211254927 cites W2075025578 @default.
- W4211254927 cites W2076483112 @default.
- W4211254927 cites W2077333655 @default.
- W4211254927 cites W2082382318 @default.
- W4211254927 cites W2082942147 @default.
- W4211254927 cites W2084089067 @default.
- W4211254927 cites W2085237255 @default.
- W4211254927 cites W2085499762 @default.
- W4211254927 cites W2085740318 @default.
- W4211254927 cites W2085996902 @default.
- W4211254927 cites W2090673870 @default.
- W4211254927 cites W2090927844 @default.
- W4211254927 cites W2092540325 @default.
- W4211254927 cites W2102275920 @default.
- W4211254927 cites W2104027759 @default.
- W4211254927 cites W2105936640 @default.
- W4211254927 cites W2128015762 @default.
- W4211254927 cites W2128986255 @default.
- W4211254927 cites W2159700813 @default.
- W4211254927 cites W2161021713 @default.
- W4211254927 cites W2169727226 @default.
- W4211254927 cites W2171392313 @default.
- W4211254927 cites W2317749023 @default.
- W4211254927 cites W2593911140 @default.
- W4211254927 cites W2964318798 @default.
- W4211254927 cites W2970262921 @default.
- W4211254927 cites W2977957397 @default.
- W4211254927 cites W4214760096 @default.
- W4211254927 cites W4230822461 @default.
- W4211254927 cites W4233536583 @default.
- W4211254927 cites W4234534407 @default.
- W4211254927 cites W4234593440 @default.
- W4211254927 cites W4235788533 @default.
- W4211254927 cites W4240596267 @default.
- W4211254927 cites W4244005575 @default.
- W4211254927 cites W4246633675 @default.
- W4211254927 cites W4247479023 @default.
- W4211254927 cites W4248171624 @default.
- W4211254927 cites W4252336596 @default.
- W4211254927 cites W564945608 @default.
- W4211254927 cites W610492773 @default.
- W4211254927 doi "https://doi.org/10.1002/9781119292272.biblio" @default.
- W4211254927 hasPublicationYear "2016" @default.
- W4211254927 type Work @default.
- W4211254927 citedByCount "0" @default.
- W4211254927 crossrefType "other" @default.
- W4211254927 hasBestOaLocation W42112549271 @default.
- W4211254927 hasConcept C41008148 @default.