Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212767932> ?p ?o ?g. }
- W4212767932 endingPage "E177" @default.
- W4212767932 startingPage "E171" @default.
- W4212767932 abstract "Background and study aims Colon capsule endoscopy (CCE) is a minimally invasive alternative to conventional colonoscopy. However, CCE produces long videos, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial intelligence (AI) algorithms with high performance levels in image analysis. We aimed to develop a deep learning model for automatic identification and differentiation of significant colonic mucosal lesions and blood in CCE images. Patients and methods A retrospective multicenter study including 124 CCE examinations was conducted for development of a CNN model, using a database of CCE images including anonymized images of patients with normal colon mucosa, several mucosal lesions (erosions, ulcers, vascular lesions and protruding lesions) and luminal blood. For CNN development, 9005 images (3,075 normal mucosa, 3,115 blood and 2,815 mucosal lesions) were ultimately extracted. Two image datasets were created and used for CNN training and validation. Results The mean (standard deviation) sensitivity and specificity of the CNN were 96.3 % (3.9 %) and 98.2 % (1.8 %) Mucosal lesions were detected with a sensitivity of 92.0 % and a specificity of 98.5 %. Blood was detected with a sensitivity and specificity of 97.2 % and 99.9 %, respectively. The algorithm was 99.2 % sensitive and 99.6 % specific in distinguishing blood from mucosal lesions. The CNN processed 65 frames per second. Conclusions This is the first CNN-based algorithm to accurately detect and distinguish colonic mucosal lesions and luminal blood in CCE images. AI may improve diagnostic and time efficiency of CCE exams, thus facilitating CCE adoption to routine clinical practice." @default.
- W4212767932 created "2022-02-24" @default.
- W4212767932 creator A5001239416 @default.
- W4212767932 creator A5003404880 @default.
- W4212767932 creator A5004370490 @default.
- W4212767932 creator A5031611021 @default.
- W4212767932 creator A5033103559 @default.
- W4212767932 creator A5048397826 @default.
- W4212767932 creator A5049312271 @default.
- W4212767932 creator A5051917978 @default.
- W4212767932 creator A5053066053 @default.
- W4212767932 creator A5085368768 @default.
- W4212767932 date "2022-02-01" @default.
- W4212767932 modified "2023-10-14" @default.
- W4212767932 title "Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network" @default.
- W4212767932 cites W1898806719 @default.
- W4212767932 cites W1964558528 @default.
- W4212767932 cites W1967742015 @default.
- W4212767932 cites W1969122765 @default.
- W4212767932 cites W2030143533 @default.
- W4212767932 cites W2032633321 @default.
- W4212767932 cites W2042197427 @default.
- W4212767932 cites W2049978855 @default.
- W4212767932 cites W2057784612 @default.
- W4212767932 cites W2064045866 @default.
- W4212767932 cites W2140570429 @default.
- W4212767932 cites W2149632434 @default.
- W4212767932 cites W2320680151 @default.
- W4212767932 cites W2382564363 @default.
- W4212767932 cites W2581082771 @default.
- W4212767932 cites W2598442119 @default.
- W4212767932 cites W2735863358 @default.
- W4212767932 cites W2765571304 @default.
- W4212767932 cites W2801458876 @default.
- W4212767932 cites W2809596283 @default.
- W4212767932 cites W2858686322 @default.
- W4212767932 cites W2898260073 @default.
- W4212767932 cites W2913820048 @default.
- W4212767932 cites W2969818771 @default.
- W4212767932 cites W2987543910 @default.
- W4212767932 cites W2990045262 @default.
- W4212767932 cites W2991611365 @default.
- W4212767932 cites W3007124747 @default.
- W4212767932 cites W3019872864 @default.
- W4212767932 cites W3034882992 @default.
- W4212767932 cites W3087017911 @default.
- W4212767932 cites W3092422480 @default.
- W4212767932 cites W3119924552 @default.
- W4212767932 doi "https://doi.org/10.1055/a-1675-1941" @default.
- W4212767932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35186665" @default.
- W4212767932 hasPublicationYear "2022" @default.
- W4212767932 type Work @default.
- W4212767932 citedByCount "7" @default.
- W4212767932 countsByYear W42127679322022 @default.
- W4212767932 countsByYear W42127679322023 @default.
- W4212767932 crossrefType "journal-article" @default.
- W4212767932 hasAuthorship W4212767932A5001239416 @default.
- W4212767932 hasAuthorship W4212767932A5003404880 @default.
- W4212767932 hasAuthorship W4212767932A5004370490 @default.
- W4212767932 hasAuthorship W4212767932A5031611021 @default.
- W4212767932 hasAuthorship W4212767932A5033103559 @default.
- W4212767932 hasAuthorship W4212767932A5048397826 @default.
- W4212767932 hasAuthorship W4212767932A5049312271 @default.
- W4212767932 hasAuthorship W4212767932A5051917978 @default.
- W4212767932 hasAuthorship W4212767932A5053066053 @default.
- W4212767932 hasAuthorship W4212767932A5085368768 @default.
- W4212767932 hasBestOaLocation W42127679321 @default.
- W4212767932 hasConcept C108583219 @default.
- W4212767932 hasConcept C121608353 @default.
- W4212767932 hasConcept C126322002 @default.
- W4212767932 hasConcept C142724271 @default.
- W4212767932 hasConcept C154945302 @default.
- W4212767932 hasConcept C2777333622 @default.
- W4212767932 hasConcept C2778435480 @default.
- W4212767932 hasConcept C2909114478 @default.
- W4212767932 hasConcept C41008148 @default.
- W4212767932 hasConcept C526805850 @default.
- W4212767932 hasConcept C71924100 @default.
- W4212767932 hasConcept C81363708 @default.
- W4212767932 hasConcept C90924648 @default.
- W4212767932 hasConceptScore W4212767932C108583219 @default.
- W4212767932 hasConceptScore W4212767932C121608353 @default.
- W4212767932 hasConceptScore W4212767932C126322002 @default.
- W4212767932 hasConceptScore W4212767932C142724271 @default.
- W4212767932 hasConceptScore W4212767932C154945302 @default.
- W4212767932 hasConceptScore W4212767932C2777333622 @default.
- W4212767932 hasConceptScore W4212767932C2778435480 @default.
- W4212767932 hasConceptScore W4212767932C2909114478 @default.
- W4212767932 hasConceptScore W4212767932C41008148 @default.
- W4212767932 hasConceptScore W4212767932C526805850 @default.
- W4212767932 hasConceptScore W4212767932C71924100 @default.
- W4212767932 hasConceptScore W4212767932C81363708 @default.
- W4212767932 hasConceptScore W4212767932C90924648 @default.
- W4212767932 hasIssue "02" @default.
- W4212767932 hasLocation W42127679321 @default.
- W4212767932 hasLocation W42127679322 @default.
- W4212767932 hasLocation W42127679323 @default.
- W4212767932 hasLocation W42127679324 @default.