Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212792350> ?p ?o ?g. }
- W4212792350 endingPage "104123" @default.
- W4212792350 startingPage "104123" @default.
- W4212792350 abstract "Revenue estimation for integrated renewable energy and energy storage systems is important to support plant owners or operators’ decisions in battery sizing selection that leads to maximized financial performances. A common approach to optimizing revenues of a hybrid hydro and energy storage system is using mixed-integer linear programming (MILP). Although MILP models can provide accurate production cost estimations, they are typically very computationally expensive. To provide a fast yet accurate first-step information to hydropower plant owners or operators who consider integrating energy storage systems, we propose an innovative approach to predicting optimal revenues of an integrated energy generation and storage system. In this study, we examined the performance of two prediction techniques: Generalized Additive Models (GAMs) and machine learning (ML) models developed based on artificial neural networks (ANN). Predictive equations and models are generated based on optimized solutions from a market participation optimization model, the Conventional Hydropower Energy and Environmental Resource System (CHEERS) model. The two predicting techniques reduce the computational time to evaluate annual revenue for one set of battery configurations from 3 h to 1 to 4 min per run while also being implementable with significantly less data. The model validation prediction errors of developed GAMs and ML models are generally below 5%; for model testing predictions, the ML models consistently outperform the regression equations in terms of root mean square errors. This new approach allows plant owners, operators, or potential investors to quickly access multiple battery configurations under different energy generation and market scenarios. This new revenue prediction method will therefore help reduce the barriers, and thereby promoting the deployment of battery hybridization with existing renewable energy sources." @default.
- W4212792350 created "2022-02-24" @default.
- W4212792350 creator A5004076371 @default.
- W4212792350 creator A5007039918 @default.
- W4212792350 creator A5060828373 @default.
- W4212792350 creator A5064684928 @default.
- W4212792350 creator A5065448684 @default.
- W4212792350 creator A5071077794 @default.
- W4212792350 creator A5084705208 @default.
- W4212792350 date "2022-06-01" @default.
- W4212792350 modified "2023-09-29" @default.
- W4212792350 title "Revenue prediction for integrated renewable energy and energy storage system using machine learning techniques" @default.
- W4212792350 cites W1557734215 @default.
- W4212792350 cites W1981976602 @default.
- W4212792350 cites W1991414280 @default.
- W4212792350 cites W1992110068 @default.
- W4212792350 cites W1993631132 @default.
- W4212792350 cites W2002016471 @default.
- W4212792350 cites W2232834753 @default.
- W4212792350 cites W2284910918 @default.
- W4212792350 cites W2765383267 @default.
- W4212792350 cites W2789992639 @default.
- W4212792350 cites W2883867434 @default.
- W4212792350 cites W2965751469 @default.
- W4212792350 cites W2989977674 @default.
- W4212792350 cites W3085049125 @default.
- W4212792350 cites W3110125326 @default.
- W4212792350 cites W3160457958 @default.
- W4212792350 cites W4233728497 @default.
- W4212792350 doi "https://doi.org/10.1016/j.est.2022.104123" @default.
- W4212792350 hasPublicationYear "2022" @default.
- W4212792350 type Work @default.
- W4212792350 citedByCount "6" @default.
- W4212792350 countsByYear W42127923502022 @default.
- W4212792350 countsByYear W42127923502023 @default.
- W4212792350 crossrefType "journal-article" @default.
- W4212792350 hasAuthorship W4212792350A5004076371 @default.
- W4212792350 hasAuthorship W4212792350A5007039918 @default.
- W4212792350 hasAuthorship W4212792350A5060828373 @default.
- W4212792350 hasAuthorship W4212792350A5064684928 @default.
- W4212792350 hasAuthorship W4212792350A5065448684 @default.
- W4212792350 hasAuthorship W4212792350A5071077794 @default.
- W4212792350 hasAuthorship W4212792350A5084705208 @default.
- W4212792350 hasBestOaLocation W42127923501 @default.
- W4212792350 hasConcept C11413529 @default.
- W4212792350 hasConcept C119599485 @default.
- W4212792350 hasConcept C119857082 @default.
- W4212792350 hasConcept C121332964 @default.
- W4212792350 hasConcept C121955636 @default.
- W4212792350 hasConcept C126255220 @default.
- W4212792350 hasConcept C127413603 @default.
- W4212792350 hasConcept C142362112 @default.
- W4212792350 hasConcept C153349607 @default.
- W4212792350 hasConcept C162324750 @default.
- W4212792350 hasConcept C163258240 @default.
- W4212792350 hasConcept C188573790 @default.
- W4212792350 hasConcept C195487862 @default.
- W4212792350 hasConcept C2777767291 @default.
- W4212792350 hasConcept C33923547 @default.
- W4212792350 hasConcept C41008148 @default.
- W4212792350 hasConcept C50644808 @default.
- W4212792350 hasConcept C56086750 @default.
- W4212792350 hasConcept C62520636 @default.
- W4212792350 hasConcept C73916439 @default.
- W4212792350 hasConceptScore W4212792350C11413529 @default.
- W4212792350 hasConceptScore W4212792350C119599485 @default.
- W4212792350 hasConceptScore W4212792350C119857082 @default.
- W4212792350 hasConceptScore W4212792350C121332964 @default.
- W4212792350 hasConceptScore W4212792350C121955636 @default.
- W4212792350 hasConceptScore W4212792350C126255220 @default.
- W4212792350 hasConceptScore W4212792350C127413603 @default.
- W4212792350 hasConceptScore W4212792350C142362112 @default.
- W4212792350 hasConceptScore W4212792350C153349607 @default.
- W4212792350 hasConceptScore W4212792350C162324750 @default.
- W4212792350 hasConceptScore W4212792350C163258240 @default.
- W4212792350 hasConceptScore W4212792350C188573790 @default.
- W4212792350 hasConceptScore W4212792350C195487862 @default.
- W4212792350 hasConceptScore W4212792350C2777767291 @default.
- W4212792350 hasConceptScore W4212792350C33923547 @default.
- W4212792350 hasConceptScore W4212792350C41008148 @default.
- W4212792350 hasConceptScore W4212792350C50644808 @default.
- W4212792350 hasConceptScore W4212792350C56086750 @default.
- W4212792350 hasConceptScore W4212792350C62520636 @default.
- W4212792350 hasConceptScore W4212792350C73916439 @default.
- W4212792350 hasLocation W42127923501 @default.
- W4212792350 hasLocation W42127923502 @default.
- W4212792350 hasOpenAccess W4212792350 @default.
- W4212792350 hasPrimaryLocation W42127923501 @default.
- W4212792350 hasRelatedWork W2065608948 @default.
- W4212792350 hasRelatedWork W2084057713 @default.
- W4212792350 hasRelatedWork W2092387420 @default.
- W4212792350 hasRelatedWork W2250097756 @default.
- W4212792350 hasRelatedWork W2783679183 @default.
- W4212792350 hasRelatedWork W2889970748 @default.
- W4212792350 hasRelatedWork W3039631951 @default.
- W4212792350 hasRelatedWork W3096105468 @default.
- W4212792350 hasRelatedWork W3148329799 @default.
- W4212792350 hasRelatedWork W4384435331 @default.