Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212797719> ?p ?o ?g. }
- W4212797719 endingPage "29820" @default.
- W4212797719 startingPage "29810" @default.
- W4212797719 abstract "Bamboo surface defect detection provides quality assurance for bamboo product manufacture in industrial scenarios, an integral part of the overall manufacturing process. Currently, bamboo defect inspection predominantly relies on manual operation, but manual inspection is very time-consuming as well as labor-intensive, and the quality of inspection is not guaranteed. A few visual inspection systems based on traditional image processing have been deployed in some factories in recent years. However, traditional machine vision algorithms extract features in tedious steps and have poor performance along with poor adaptability in the face of complex defects. Accordingly, many scholars are committed to seeking deep learning methods to accomplish surface defect detection. However, existing deep learning object detectors struggle with specific industrial defects when directly applied to industrial defect detection, such as sliver defects, especially for ones with extreme aspect ratios. To this end, this paper proposes an improved algorithm based on the advanced object detector YOLOV4-CSP, which introduces asymmetric convolution and attention mechanism. The introduction of asymmetric convolution enhances the feature extraction in the horizontal direction of the bamboo strip surface, improving the performance in detecting sliver defects. In addition, convolutional block attention module(CBAM), a hybrid attention module, which combines channel attention with spatial attention, is utilized to promote the representation ability of the model by increasing the weights of crucial channels and regions. The proposed model achieves outstanding performance in the general categories and excels in the hard-to-detect categories. Some enterprise’s bamboo strip dataset experiments verify that the model can reach 96.74% mAP for the typical six surface defects. Meanwhile, we also observe significant improvements when extending our model to aluminum datasets with similar characteristics." @default.
- W4212797719 created "2022-02-24" @default.
- W4212797719 creator A5003585292 @default.
- W4212797719 creator A5033881949 @default.
- W4212797719 creator A5047093326 @default.
- W4212797719 creator A5054304362 @default.
- W4212797719 creator A5056265304 @default.
- W4212797719 creator A5063758996 @default.
- W4212797719 creator A5091579137 @default.
- W4212797719 date "2022-01-01" @default.
- W4212797719 modified "2023-09-27" @default.
- W4212797719 title "Improved YOLOV4-CSP Algorithm for Detection of Bamboo Surface Sliver Defects With Extreme Aspect Ratio" @default.
- W4212797719 cites W1536680647 @default.
- W4212797719 cites W2019370496 @default.
- W4212797719 cites W2050733270 @default.
- W4212797719 cites W2102605133 @default.
- W4212797719 cites W2570343428 @default.
- W4212797719 cites W2601564443 @default.
- W4212797719 cites W2752346598 @default.
- W4212797719 cites W2813925077 @default.
- W4212797719 cites W2884585870 @default.
- W4212797719 cites W2895766543 @default.
- W4212797719 cites W2963037989 @default.
- W4212797719 cites W2963351448 @default.
- W4212797719 cites W2981609437 @default.
- W4212797719 cites W2989604896 @default.
- W4212797719 cites W3022336857 @default.
- W4212797719 cites W3042011474 @default.
- W4212797719 cites W3087751617 @default.
- W4212797719 cites W3113911158 @default.
- W4212797719 cites W3119205652 @default.
- W4212797719 cites W3180134609 @default.
- W4212797719 doi "https://doi.org/10.1109/access.2022.3152552" @default.
- W4212797719 hasPublicationYear "2022" @default.
- W4212797719 type Work @default.
- W4212797719 citedByCount "5" @default.
- W4212797719 countsByYear W42127977192022 @default.
- W4212797719 countsByYear W42127977192023 @default.
- W4212797719 crossrefType "journal-article" @default.
- W4212797719 hasAuthorship W4212797719A5003585292 @default.
- W4212797719 hasAuthorship W4212797719A5033881949 @default.
- W4212797719 hasAuthorship W4212797719A5047093326 @default.
- W4212797719 hasAuthorship W4212797719A5054304362 @default.
- W4212797719 hasAuthorship W4212797719A5056265304 @default.
- W4212797719 hasAuthorship W4212797719A5063758996 @default.
- W4212797719 hasAuthorship W4212797719A5091579137 @default.
- W4212797719 hasBestOaLocation W42127977191 @default.
- W4212797719 hasConcept C108583219 @default.
- W4212797719 hasConcept C111472728 @default.
- W4212797719 hasConcept C111919701 @default.
- W4212797719 hasConcept C127162648 @default.
- W4212797719 hasConcept C138885662 @default.
- W4212797719 hasConcept C153180895 @default.
- W4212797719 hasConcept C154945302 @default.
- W4212797719 hasConcept C2524010 @default.
- W4212797719 hasConcept C2776151529 @default.
- W4212797719 hasConcept C2776401178 @default.
- W4212797719 hasConcept C2777210771 @default.
- W4212797719 hasConcept C2779530757 @default.
- W4212797719 hasConcept C31258907 @default.
- W4212797719 hasConcept C31972630 @default.
- W4212797719 hasConcept C33923547 @default.
- W4212797719 hasConcept C41008148 @default.
- W4212797719 hasConcept C41895202 @default.
- W4212797719 hasConcept C45347329 @default.
- W4212797719 hasConcept C50644808 @default.
- W4212797719 hasConcept C52622490 @default.
- W4212797719 hasConcept C81363708 @default.
- W4212797719 hasConcept C98045186 @default.
- W4212797719 hasConceptScore W4212797719C108583219 @default.
- W4212797719 hasConceptScore W4212797719C111472728 @default.
- W4212797719 hasConceptScore W4212797719C111919701 @default.
- W4212797719 hasConceptScore W4212797719C127162648 @default.
- W4212797719 hasConceptScore W4212797719C138885662 @default.
- W4212797719 hasConceptScore W4212797719C153180895 @default.
- W4212797719 hasConceptScore W4212797719C154945302 @default.
- W4212797719 hasConceptScore W4212797719C2524010 @default.
- W4212797719 hasConceptScore W4212797719C2776151529 @default.
- W4212797719 hasConceptScore W4212797719C2776401178 @default.
- W4212797719 hasConceptScore W4212797719C2777210771 @default.
- W4212797719 hasConceptScore W4212797719C2779530757 @default.
- W4212797719 hasConceptScore W4212797719C31258907 @default.
- W4212797719 hasConceptScore W4212797719C31972630 @default.
- W4212797719 hasConceptScore W4212797719C33923547 @default.
- W4212797719 hasConceptScore W4212797719C41008148 @default.
- W4212797719 hasConceptScore W4212797719C41895202 @default.
- W4212797719 hasConceptScore W4212797719C45347329 @default.
- W4212797719 hasConceptScore W4212797719C50644808 @default.
- W4212797719 hasConceptScore W4212797719C52622490 @default.
- W4212797719 hasConceptScore W4212797719C81363708 @default.
- W4212797719 hasConceptScore W4212797719C98045186 @default.
- W4212797719 hasFunder F4320321001 @default.
- W4212797719 hasLocation W42127977191 @default.
- W4212797719 hasOpenAccess W4212797719 @default.
- W4212797719 hasPrimaryLocation W42127977191 @default.
- W4212797719 hasRelatedWork W2279398222 @default.
- W4212797719 hasRelatedWork W2295021132 @default.
- W4212797719 hasRelatedWork W2546942002 @default.