Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212800897> ?p ?o ?g. }
- W4212800897 endingPage "13" @default.
- W4212800897 startingPage "1" @default.
- W4212800897 abstract "Hyperspectral anomaly detection (HAD) is a challenging task since samples are unavailable for training. Although unsupervised learning methods have been developed, they often train the model using an original hyperspectral image (HSI) and require retraining on different HSIs, which may limit the feasibility of HAD methods in practical applications. To tackle this problem, we propose a dual-frequency autoencoder (DFAE) detection model in which the original HSI is transformed into high-frequency components (HFCs) and low-frequency components (LFCs) before detection. A novel spectral rectification is first proposed to alleviate the spectral variation problem and generate the LFCs of HSI. Meanwhile, the HFCs are extracted by the Laplacian operator. Subsequently, the proposed DFAE model is learned to detect anomalies from the LFCs and HFCs in parallel. Finally, the learned model is well-generalized for anomaly detection from other hyperspectral datasets. While breaking the dilemma of limited generalization in the sample-free HAD task, the proposed DFAE can enhance the background–anomaly separability, providing a better performance gain. Experiments on real datasets demonstrate that the DFAE method exhibits competitive performance compared with other advanced HAD methods." @default.
- W4212800897 created "2022-02-24" @default.
- W4212800897 creator A5033017179 @default.
- W4212800897 creator A5047591289 @default.
- W4212800897 creator A5052163069 @default.
- W4212800897 creator A5061837376 @default.
- W4212800897 creator A5067798266 @default.
- W4212800897 date "2022-01-01" @default.
- W4212800897 modified "2023-10-16" @default.
- W4212800897 title "Dual-Frequency Autoencoder for Anomaly Detection in Transformed Hyperspectral Imagery" @default.
- W4212800897 cites W1963659868 @default.
- W4212800897 cites W1971796065 @default.
- W4212800897 cites W1975610128 @default.
- W4212800897 cites W2004491663 @default.
- W4212800897 cites W2017014096 @default.
- W4212800897 cites W2024288510 @default.
- W4212800897 cites W2047870694 @default.
- W4212800897 cites W2067897118 @default.
- W4212800897 cites W2124267685 @default.
- W4212800897 cites W2124463804 @default.
- W4212800897 cites W2125188192 @default.
- W4212800897 cites W2139577851 @default.
- W4212800897 cites W2141957843 @default.
- W4212800897 cites W2145962650 @default.
- W4212800897 cites W2155653793 @default.
- W4212800897 cites W2167225252 @default.
- W4212800897 cites W2295576075 @default.
- W4212800897 cites W2316226477 @default.
- W4212800897 cites W2497075055 @default.
- W4212800897 cites W2547840382 @default.
- W4212800897 cites W2740976805 @default.
- W4212800897 cites W2745679387 @default.
- W4212800897 cites W2756635220 @default.
- W4212800897 cites W2891833067 @default.
- W4212800897 cites W2902747464 @default.
- W4212800897 cites W2911876518 @default.
- W4212800897 cites W2951751271 @default.
- W4212800897 cites W2953478519 @default.
- W4212800897 cites W2969635036 @default.
- W4212800897 cites W2970724283 @default.
- W4212800897 cites W2973454555 @default.
- W4212800897 cites W2975506318 @default.
- W4212800897 cites W2983563481 @default.
- W4212800897 cites W2983725697 @default.
- W4212800897 cites W2987748894 @default.
- W4212800897 cites W2988878652 @default.
- W4212800897 cites W2991471181 @default.
- W4212800897 cites W2998940023 @default.
- W4212800897 cites W3003955104 @default.
- W4212800897 cites W3008839601 @default.
- W4212800897 cites W3015560401 @default.
- W4212800897 cites W3034175346 @default.
- W4212800897 cites W3042747521 @default.
- W4212800897 cites W3049654296 @default.
- W4212800897 cites W3080792885 @default.
- W4212800897 cites W3133518153 @default.
- W4212800897 cites W3137199127 @default.
- W4212800897 cites W3179693485 @default.
- W4212800897 cites W4246528899 @default.
- W4212800897 doi "https://doi.org/10.1109/tgrs.2022.3152263" @default.
- W4212800897 hasPublicationYear "2022" @default.
- W4212800897 type Work @default.
- W4212800897 citedByCount "6" @default.
- W4212800897 countsByYear W42128008972022 @default.
- W4212800897 countsByYear W42128008972023 @default.
- W4212800897 crossrefType "journal-article" @default.
- W4212800897 hasAuthorship W4212800897A5033017179 @default.
- W4212800897 hasAuthorship W4212800897A5047591289 @default.
- W4212800897 hasAuthorship W4212800897A5052163069 @default.
- W4212800897 hasAuthorship W4212800897A5061837376 @default.
- W4212800897 hasAuthorship W4212800897A5067798266 @default.
- W4212800897 hasConcept C101738243 @default.
- W4212800897 hasConcept C108583219 @default.
- W4212800897 hasConcept C119857082 @default.
- W4212800897 hasConcept C153180895 @default.
- W4212800897 hasConcept C154945302 @default.
- W4212800897 hasConcept C159078339 @default.
- W4212800897 hasConcept C41008148 @default.
- W4212800897 hasConcept C739882 @default.
- W4212800897 hasConceptScore W4212800897C101738243 @default.
- W4212800897 hasConceptScore W4212800897C108583219 @default.
- W4212800897 hasConceptScore W4212800897C119857082 @default.
- W4212800897 hasConceptScore W4212800897C153180895 @default.
- W4212800897 hasConceptScore W4212800897C154945302 @default.
- W4212800897 hasConceptScore W4212800897C159078339 @default.
- W4212800897 hasConceptScore W4212800897C41008148 @default.
- W4212800897 hasConceptScore W4212800897C739882 @default.
- W4212800897 hasFunder F4320321001 @default.
- W4212800897 hasLocation W42128008971 @default.
- W4212800897 hasOpenAccess W4212800897 @default.
- W4212800897 hasPrimaryLocation W42128008971 @default.
- W4212800897 hasRelatedWork W2775464024 @default.
- W4212800897 hasRelatedWork W2998168123 @default.
- W4212800897 hasRelatedWork W3044458868 @default.
- W4212800897 hasRelatedWork W3198337842 @default.
- W4212800897 hasRelatedWork W3205538325 @default.
- W4212800897 hasRelatedWork W4226241830 @default.
- W4212800897 hasRelatedWork W4283311847 @default.