Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212804975> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4212804975 endingPage "104076" @default.
- W4212804975 startingPage "104076" @default.
- W4212804975 abstract "Deep learning has been a promising technology in many biomedical applications. In this study, a deep network was proposed aiming for caries segmentation on the clinically collected tooth X-ray images.The proposed network inherited the skip connection characteristic from the widely used U-shaped network, and creatively adopted vision Transformer, dilated convolution, and feature pyramid fusion methods to enhance the multi-scale and global feature extraction capability. It was then trained on the clinically self-collected and augmented tooth X-ray image dataset, and the dice similarity and pixel classification precision were calculated for the network's performance evaluation.Experimental results revealed an average dice similarity of 0.7487 and an average pixel classification precision of 0.7443 on the test dataset, which outperformed the compared networks such as UNet, Trans-UNet, and Swin-UNet, demonstrating the remarkable improvement of the proposed network.This study contributed to the automatic caries segmentation by using a deep network, and highlighted the potential clinical utility value." @default.
- W4212804975 created "2022-02-24" @default.
- W4212804975 creator A5011036221 @default.
- W4212804975 creator A5027842206 @default.
- W4212804975 creator A5035676995 @default.
- W4212804975 creator A5061793382 @default.
- W4212804975 creator A5080794656 @default.
- W4212804975 date "2022-04-01" @default.
- W4212804975 modified "2023-10-06" @default.
- W4212804975 title "Caries segmentation on tooth X-ray images with a deep network" @default.
- W4212804975 cites W1486002184 @default.
- W4212804975 cites W2110764733 @default.
- W4212804975 cites W2275865840 @default.
- W4212804975 cites W2555989946 @default.
- W4212804975 cites W2804967795 @default.
- W4212804975 cites W2883741661 @default.
- W4212804975 cites W2912654919 @default.
- W4212804975 cites W2963901018 @default.
- W4212804975 cites W2983894279 @default.
- W4212804975 cites W2996290406 @default.
- W4212804975 cites W3038992530 @default.
- W4212804975 cites W3130719814 @default.
- W4212804975 cites W3134475970 @default.
- W4212804975 cites W3170719901 @default.
- W4212804975 doi "https://doi.org/10.1016/j.jdent.2022.104076" @default.
- W4212804975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35218876" @default.
- W4212804975 hasPublicationYear "2022" @default.
- W4212804975 type Work @default.
- W4212804975 citedByCount "9" @default.
- W4212804975 countsByYear W42128049752022 @default.
- W4212804975 countsByYear W42128049752023 @default.
- W4212804975 crossrefType "journal-article" @default.
- W4212804975 hasAuthorship W4212804975A5011036221 @default.
- W4212804975 hasAuthorship W4212804975A5027842206 @default.
- W4212804975 hasAuthorship W4212804975A5035676995 @default.
- W4212804975 hasAuthorship W4212804975A5061793382 @default.
- W4212804975 hasAuthorship W4212804975A5080794656 @default.
- W4212804975 hasConcept C103278499 @default.
- W4212804975 hasConcept C108583219 @default.
- W4212804975 hasConcept C115961682 @default.
- W4212804975 hasConcept C138885662 @default.
- W4212804975 hasConcept C142575187 @default.
- W4212804975 hasConcept C153180895 @default.
- W4212804975 hasConcept C154945302 @default.
- W4212804975 hasConcept C160633673 @default.
- W4212804975 hasConcept C22029948 @default.
- W4212804975 hasConcept C2524010 @default.
- W4212804975 hasConcept C2776401178 @default.
- W4212804975 hasConcept C31972630 @default.
- W4212804975 hasConcept C33923547 @default.
- W4212804975 hasConcept C41008148 @default.
- W4212804975 hasConcept C41895202 @default.
- W4212804975 hasConcept C89600930 @default.
- W4212804975 hasConceptScore W4212804975C103278499 @default.
- W4212804975 hasConceptScore W4212804975C108583219 @default.
- W4212804975 hasConceptScore W4212804975C115961682 @default.
- W4212804975 hasConceptScore W4212804975C138885662 @default.
- W4212804975 hasConceptScore W4212804975C142575187 @default.
- W4212804975 hasConceptScore W4212804975C153180895 @default.
- W4212804975 hasConceptScore W4212804975C154945302 @default.
- W4212804975 hasConceptScore W4212804975C160633673 @default.
- W4212804975 hasConceptScore W4212804975C22029948 @default.
- W4212804975 hasConceptScore W4212804975C2524010 @default.
- W4212804975 hasConceptScore W4212804975C2776401178 @default.
- W4212804975 hasConceptScore W4212804975C31972630 @default.
- W4212804975 hasConceptScore W4212804975C33923547 @default.
- W4212804975 hasConceptScore W4212804975C41008148 @default.
- W4212804975 hasConceptScore W4212804975C41895202 @default.
- W4212804975 hasConceptScore W4212804975C89600930 @default.
- W4212804975 hasFunder F4320338464 @default.
- W4212804975 hasLocation W42128049751 @default.
- W4212804975 hasLocation W42128049752 @default.
- W4212804975 hasOpenAccess W4212804975 @default.
- W4212804975 hasPrimaryLocation W42128049751 @default.
- W4212804975 hasRelatedWork W2090093270 @default.
- W4212804975 hasRelatedWork W2517104666 @default.
- W4212804975 hasRelatedWork W2726153085 @default.
- W4212804975 hasRelatedWork W2900794075 @default.
- W4212804975 hasRelatedWork W3021659040 @default.
- W4212804975 hasRelatedWork W4220708658 @default.
- W4212804975 hasRelatedWork W4243168368 @default.
- W4212804975 hasRelatedWork W4293211451 @default.
- W4212804975 hasRelatedWork W4298035033 @default.
- W4212804975 hasRelatedWork W1482253125 @default.
- W4212804975 hasVolume "119" @default.
- W4212804975 isParatext "false" @default.
- W4212804975 isRetracted "false" @default.
- W4212804975 workType "article" @default.