Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212819166> ?p ?o ?g. }
- W4212819166 endingPage "16" @default.
- W4212819166 startingPage "1" @default.
- W4212819166 abstract "Due to the availability of cheap 3D sensors such as Kinect and LiDAR, the use of 3D data in various domains such as manufacturing, healthcare, and retail to achieve operational safety, improved outcomes, and enhanced customer experience has gained momentum in recent years. In many of these domains, object recognition is being performed using 3D data against the difficulties posed by illumination, pose variation, scaling, etc present in 2D data. In this work, we propose three data augmentation techniques for 3D data in point cloud representation that use sub-sampling. We then verify that the 3D samples created through data augmentation carry the same information by comparing the Iterative Closest Point Registration Error within the sub-samples, between the sub-samples and their parent sample, between the sub-samples with different parents and the same subject, and finally, between the sub-samples of different subjects. We also verify that the augmented sub-samples have the same characteristics and features as those of the original 3D point cloud by applying the Central Limit Theorem." @default.
- W4212819166 created "2022-02-24" @default.
- W4212819166 creator A5041506914 @default.
- W4212819166 creator A5054364792 @default.
- W4212819166 creator A5059113246 @default.
- W4212819166 creator A5073115152 @default.
- W4212819166 date "2022-04-15" @default.
- W4212819166 modified "2023-10-06" @default.
- W4212819166 title "Handling Data Scarcity Through Data Augmentation in Training of Deep Neural Networks for 3D Data Processing" @default.
- W4212819166 cites W1967368660 @default.
- W4212819166 cites W2007206727 @default.
- W4212819166 cites W2091791686 @default.
- W4212819166 cites W2160821342 @default.
- W4212819166 cites W2207409364 @default.
- W4212819166 cites W2211722331 @default.
- W4212819166 cites W2516089876 @default.
- W4212819166 cites W2589993998 @default.
- W4212819166 cites W2601221357 @default.
- W4212819166 cites W2738596982 @default.
- W4212819166 cites W2743499089 @default.
- W4212819166 cites W2782397759 @default.
- W4212819166 cites W2792454374 @default.
- W4212819166 cites W2799191197 @default.
- W4212819166 cites W2807723206 @default.
- W4212819166 cites W2885732560 @default.
- W4212819166 cites W2890490913 @default.
- W4212819166 cites W2940239237 @default.
- W4212819166 cites W2953309252 @default.
- W4212819166 cites W2962731536 @default.
- W4212819166 cites W2963119249 @default.
- W4212819166 cites W2963858339 @default.
- W4212819166 cites W2963865528 @default.
- W4212819166 cites W2964271185 @default.
- W4212819166 cites W2970336199 @default.
- W4212819166 cites W2970501463 @default.
- W4212819166 cites W2971944200 @default.
- W4212819166 cites W2981561950 @default.
- W4212819166 cites W2984624776 @default.
- W4212819166 cites W2997745647 @default.
- W4212819166 cites W3009033882 @default.
- W4212819166 cites W3033513857 @default.
- W4212819166 cites W3043545263 @default.
- W4212819166 cites W3092427874 @default.
- W4212819166 cites W4248234421 @default.
- W4212819166 cites W820315868 @default.
- W4212819166 doi "https://doi.org/10.4018/ijswis.297038" @default.
- W4212819166 hasPublicationYear "2022" @default.
- W4212819166 type Work @default.
- W4212819166 citedByCount "19" @default.
- W4212819166 countsByYear W42128191662022 @default.
- W4212819166 countsByYear W42128191662023 @default.
- W4212819166 crossrefType "journal-article" @default.
- W4212819166 hasAuthorship W4212819166A5041506914 @default.
- W4212819166 hasAuthorship W4212819166A5054364792 @default.
- W4212819166 hasAuthorship W4212819166A5059113246 @default.
- W4212819166 hasAuthorship W4212819166A5073115152 @default.
- W4212819166 hasBestOaLocation W42128191661 @default.
- W4212819166 hasConcept C106131492 @default.
- W4212819166 hasConcept C119857082 @default.
- W4212819166 hasConcept C124101348 @default.
- W4212819166 hasConcept C131979681 @default.
- W4212819166 hasConcept C132964779 @default.
- W4212819166 hasConcept C138827492 @default.
- W4212819166 hasConcept C140779682 @default.
- W4212819166 hasConcept C154945302 @default.
- W4212819166 hasConcept C17744445 @default.
- W4212819166 hasConcept C185592680 @default.
- W4212819166 hasConcept C198531522 @default.
- W4212819166 hasConcept C199360897 @default.
- W4212819166 hasConcept C199539241 @default.
- W4212819166 hasConcept C2776359362 @default.
- W4212819166 hasConcept C2781238097 @default.
- W4212819166 hasConcept C31972630 @default.
- W4212819166 hasConcept C41008148 @default.
- W4212819166 hasConcept C43617362 @default.
- W4212819166 hasConcept C50644808 @default.
- W4212819166 hasConcept C75684735 @default.
- W4212819166 hasConcept C77088390 @default.
- W4212819166 hasConcept C94625758 @default.
- W4212819166 hasConceptScore W4212819166C106131492 @default.
- W4212819166 hasConceptScore W4212819166C119857082 @default.
- W4212819166 hasConceptScore W4212819166C124101348 @default.
- W4212819166 hasConceptScore W4212819166C131979681 @default.
- W4212819166 hasConceptScore W4212819166C132964779 @default.
- W4212819166 hasConceptScore W4212819166C138827492 @default.
- W4212819166 hasConceptScore W4212819166C140779682 @default.
- W4212819166 hasConceptScore W4212819166C154945302 @default.
- W4212819166 hasConceptScore W4212819166C17744445 @default.
- W4212819166 hasConceptScore W4212819166C185592680 @default.
- W4212819166 hasConceptScore W4212819166C198531522 @default.
- W4212819166 hasConceptScore W4212819166C199360897 @default.
- W4212819166 hasConceptScore W4212819166C199539241 @default.
- W4212819166 hasConceptScore W4212819166C2776359362 @default.
- W4212819166 hasConceptScore W4212819166C2781238097 @default.
- W4212819166 hasConceptScore W4212819166C31972630 @default.
- W4212819166 hasConceptScore W4212819166C41008148 @default.
- W4212819166 hasConceptScore W4212819166C43617362 @default.
- W4212819166 hasConceptScore W4212819166C50644808 @default.