Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212825547> ?p ?o ?g. }
- W4212825547 endingPage "254" @default.
- W4212825547 startingPage "246" @default.
- W4212825547 abstract "The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p < 0.05$ </tex-math></inline-formula> ) and four ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p < 0.01$ </tex-math></inline-formula> ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p < 0.01$ </tex-math></inline-formula> ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media." @default.
- W4212825547 created "2022-02-24" @default.
- W4212825547 creator A5005695712 @default.
- W4212825547 creator A5006784495 @default.
- W4212825547 creator A5013963500 @default.
- W4212825547 creator A5038521974 @default.
- W4212825547 creator A5038776508 @default.
- W4212825547 creator A5052859288 @default.
- W4212825547 date "2023-02-01" @default.
- W4212825547 modified "2023-10-14" @default.
- W4212825547 title "A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media" @default.
- W4212825547 cites W1832693441 @default.
- W4212825547 cites W2023726302 @default.
- W4212825547 cites W2131774270 @default.
- W4212825547 cites W2790353253 @default.
- W4212825547 cites W2921259453 @default.
- W4212825547 cites W3016517099 @default.
- W4212825547 cites W3017885019 @default.
- W4212825547 cites W3035883623 @default.
- W4212825547 cites W3036242568 @default.
- W4212825547 cites W3047306349 @default.
- W4212825547 cites W3087651048 @default.
- W4212825547 cites W3092291438 @default.
- W4212825547 cites W3094479746 @default.
- W4212825547 cites W3095079964 @default.
- W4212825547 cites W3104964565 @default.
- W4212825547 cites W3107733033 @default.
- W4212825547 cites W3123405497 @default.
- W4212825547 cites W3126385542 @default.
- W4212825547 cites W3153548528 @default.
- W4212825547 cites W4250587215 @default.
- W4212825547 doi "https://doi.org/10.1109/tcss.2022.3145404" @default.
- W4212825547 hasPublicationYear "2023" @default.
- W4212825547 type Work @default.
- W4212825547 citedByCount "3" @default.
- W4212825547 countsByYear W42128255472022 @default.
- W4212825547 countsByYear W42128255472023 @default.
- W4212825547 crossrefType "journal-article" @default.
- W4212825547 hasAuthorship W4212825547A5005695712 @default.
- W4212825547 hasAuthorship W4212825547A5006784495 @default.
- W4212825547 hasAuthorship W4212825547A5013963500 @default.
- W4212825547 hasAuthorship W4212825547A5038521974 @default.
- W4212825547 hasAuthorship W4212825547A5038776508 @default.
- W4212825547 hasAuthorship W4212825547A5052859288 @default.
- W4212825547 hasConcept C118552586 @default.
- W4212825547 hasConcept C136764020 @default.
- W4212825547 hasConcept C142724271 @default.
- W4212825547 hasConcept C154945302 @default.
- W4212825547 hasConcept C15744967 @default.
- W4212825547 hasConcept C168285401 @default.
- W4212825547 hasConcept C2779134260 @default.
- W4212825547 hasConcept C2780712732 @default.
- W4212825547 hasConcept C3008058167 @default.
- W4212825547 hasConcept C33923547 @default.
- W4212825547 hasConcept C36464697 @default.
- W4212825547 hasConcept C41008148 @default.
- W4212825547 hasConcept C45357846 @default.
- W4212825547 hasConcept C518677369 @default.
- W4212825547 hasConcept C524204448 @default.
- W4212825547 hasConcept C558461103 @default.
- W4212825547 hasConcept C71924100 @default.
- W4212825547 hasConcept C89623803 @default.
- W4212825547 hasConcept C94375191 @default.
- W4212825547 hasConceptScore W4212825547C118552586 @default.
- W4212825547 hasConceptScore W4212825547C136764020 @default.
- W4212825547 hasConceptScore W4212825547C142724271 @default.
- W4212825547 hasConceptScore W4212825547C154945302 @default.
- W4212825547 hasConceptScore W4212825547C15744967 @default.
- W4212825547 hasConceptScore W4212825547C168285401 @default.
- W4212825547 hasConceptScore W4212825547C2779134260 @default.
- W4212825547 hasConceptScore W4212825547C2780712732 @default.
- W4212825547 hasConceptScore W4212825547C3008058167 @default.
- W4212825547 hasConceptScore W4212825547C33923547 @default.
- W4212825547 hasConceptScore W4212825547C36464697 @default.
- W4212825547 hasConceptScore W4212825547C41008148 @default.
- W4212825547 hasConceptScore W4212825547C45357846 @default.
- W4212825547 hasConceptScore W4212825547C518677369 @default.
- W4212825547 hasConceptScore W4212825547C524204448 @default.
- W4212825547 hasConceptScore W4212825547C558461103 @default.
- W4212825547 hasConceptScore W4212825547C71924100 @default.
- W4212825547 hasConceptScore W4212825547C89623803 @default.
- W4212825547 hasConceptScore W4212825547C94375191 @default.
- W4212825547 hasFunder F4320321001 @default.
- W4212825547 hasFunder F4320322919 @default.
- W4212825547 hasFunder F4320334978 @default.
- W4212825547 hasIssue "1" @default.
- W4212825547 hasLocation W42128255471 @default.
- W4212825547 hasOpenAccess W4212825547 @default.
- W4212825547 hasPrimaryLocation W42128255471 @default.
- W4212825547 hasRelatedWork W2748952813 @default.
- W4212825547 hasRelatedWork W3109478734 @default.
- W4212825547 hasRelatedWork W3117939604 @default.
- W4212825547 hasRelatedWork W3135742823 @default.
- W4212825547 hasRelatedWork W3169409437 @default.
- W4212825547 hasRelatedWork W3169715394 @default.
- W4212825547 hasRelatedWork W3196486567 @default.
- W4212825547 hasRelatedWork W3214493312 @default.
- W4212825547 hasRelatedWork W4205632249 @default.