Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212842743> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4212842743 abstract "Prostate cancer (PCa) is the second most commonly diagnosed cancer worldwide among men. In spite of it, its current diagnostic pathway is substantially hampered by over-diagnosis of indolent lesions and under-detection of aggressive ones. Imaging techniques like magnetic resonance imaging (MRI) have proven to add additional value to the current diagnostic practices, but they rely on specialized training and can be time-intensive. Deep learning (DL) has arisen as an alternative to automatize tasks such as MRI analysis. Nevertheless, its success relies on large amounts of annotated data which are rarely available in the medical domain. Existing work tackling data scarcity commonly relies on ImageNet pre-training, which is sub-optimal due to the existing gap between the training and the task domain. We propose a generative self-supervised learning (SSL) approach to alleviate such issues. We show that by making use of an auto-encoder architecture and by applying different patch-level transformations such as pixel intensity or occlusion transformations to T2w MRI slices and then trying to recover the original T2w slice we are able to learn robust medical visual representations that are domain-specific. Furthermore, we show the usefulness of our approach by making use of the representations as an initialization method for PCa lesion classification downstream task. Following, we show how our method outperforms ImageNet initialization and how the performance gap increases as the amount of the available labeled data decreases. Furthermore, we provide a detailed sensitivity analysis of the different pixel manipulation transformations and their effect on the downstream task performance." @default.
- W4212842743 created "2022-02-24" @default.
- W4212842743 creator A5025536956 @default.
- W4212842743 creator A5026406347 @default.
- W4212842743 creator A5033070399 @default.
- W4212842743 creator A5045408061 @default.
- W4212842743 date "2022-04-04" @default.
- W4212842743 modified "2023-09-24" @default.
- W4212842743 title "Learning to triage by learning to reconstruct: a generative self-supervised approach for prostate cancer based on axial T2w MRI" @default.
- W4212842743 cites W1582198338 @default.
- W4212842743 cites W2107030642 @default.
- W4212842743 cites W2107579655 @default.
- W4212842743 cites W2117539524 @default.
- W4212842743 cites W2163300952 @default.
- W4212842743 cites W2581082771 @default.
- W4212842743 cites W2904412814 @default.
- W4212842743 cites W2922071185 @default.
- W4212842743 cites W3007269495 @default.
- W4212842743 cites W3007472664 @default.
- W4212842743 cites W3129875423 @default.
- W4212842743 cites W4200409436 @default.
- W4212842743 cites W4212814481 @default.
- W4212842743 cites W4245735449 @default.
- W4212842743 doi "https://doi.org/10.1117/12.2610623" @default.
- W4212842743 hasPublicationYear "2022" @default.
- W4212842743 type Work @default.
- W4212842743 citedByCount "1" @default.
- W4212842743 countsByYear W42128427432022 @default.
- W4212842743 crossrefType "proceedings-article" @default.
- W4212842743 hasAuthorship W4212842743A5025536956 @default.
- W4212842743 hasAuthorship W4212842743A5026406347 @default.
- W4212842743 hasAuthorship W4212842743A5033070399 @default.
- W4212842743 hasAuthorship W4212842743A5045408061 @default.
- W4212842743 hasConcept C108583219 @default.
- W4212842743 hasConcept C114466953 @default.
- W4212842743 hasConcept C119857082 @default.
- W4212842743 hasConcept C134306372 @default.
- W4212842743 hasConcept C153180895 @default.
- W4212842743 hasConcept C154945302 @default.
- W4212842743 hasConcept C162324750 @default.
- W4212842743 hasConcept C187736073 @default.
- W4212842743 hasConcept C199360897 @default.
- W4212842743 hasConcept C2780451532 @default.
- W4212842743 hasConcept C33923547 @default.
- W4212842743 hasConcept C36503486 @default.
- W4212842743 hasConcept C41008148 @default.
- W4212842743 hasConceptScore W4212842743C108583219 @default.
- W4212842743 hasConceptScore W4212842743C114466953 @default.
- W4212842743 hasConceptScore W4212842743C119857082 @default.
- W4212842743 hasConceptScore W4212842743C134306372 @default.
- W4212842743 hasConceptScore W4212842743C153180895 @default.
- W4212842743 hasConceptScore W4212842743C154945302 @default.
- W4212842743 hasConceptScore W4212842743C162324750 @default.
- W4212842743 hasConceptScore W4212842743C187736073 @default.
- W4212842743 hasConceptScore W4212842743C199360897 @default.
- W4212842743 hasConceptScore W4212842743C2780451532 @default.
- W4212842743 hasConceptScore W4212842743C33923547 @default.
- W4212842743 hasConceptScore W4212842743C36503486 @default.
- W4212842743 hasConceptScore W4212842743C41008148 @default.
- W4212842743 hasLocation W42128427431 @default.
- W4212842743 hasOpenAccess W4212842743 @default.
- W4212842743 hasPrimaryLocation W42128427431 @default.
- W4212842743 hasRelatedWork W2773120646 @default.
- W4212842743 hasRelatedWork W3014300295 @default.
- W4212842743 hasRelatedWork W3164822677 @default.
- W4212842743 hasRelatedWork W4223943233 @default.
- W4212842743 hasRelatedWork W4225161397 @default.
- W4212842743 hasRelatedWork W4250304930 @default.
- W4212842743 hasRelatedWork W4309045103 @default.
- W4212842743 hasRelatedWork W4312200629 @default.
- W4212842743 hasRelatedWork W4360585206 @default.
- W4212842743 hasRelatedWork W4364306694 @default.
- W4212842743 isParatext "false" @default.
- W4212842743 isRetracted "false" @default.
- W4212842743 workType "article" @default.