Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212852871> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4212852871 endingPage "357" @default.
- W4212852871 startingPage "353" @default.
- W4212852871 abstract "Free Access Bibliography Barna Szabó, Barna Szabó Washington University in St. Louis, USASearch for more papers by this authorIvo Babuška, Ivo Babuška The University of Texas at Austin, USASearch for more papers by this author Book Author(s):Barna Szabó, Barna Szabó Washington University in St. Louis, USASearch for more papers by this authorIvo Babuška, Ivo Babuška The University of Texas at Austin, USASearch for more papers by this author First published: 08 March 2011 https://doi.org/10.1002/9781119993834.biblio AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Bibliography Actis R, Szabó BA and Schwab C. Hierarchic models for laminated plates and shells. Comput. Methods Appl. Mech. Eng. 172 (1999) 79– 107. CrossrefADSWeb of Science®Google Scholar Ainsworth M and Oden JT. A Posteriori Error Estimation in Fiinite Element Analysis. John Wiley & Sons, Inc., New York, 2000. Wiley Online LibraryGoogle Scholar ASTM E 1049-85 (Reapproved 1997). Standard Practices for Cycle Counting in Fatigue Analysis. In: Annual Book of ASTM Standards, Vol. 03.01 Philadelphia, 1999, pp. 710– 718. Google Scholar Babuška I, d'Harcourt JM and Schwab C. Optimal shear correction factors in hierarchical plate modelling. Math. Modelling Sci. Comput. 1 (1993) 1– 30. Google Scholar Babuška I, Szabó BA and Katz IN. The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515– 545. CrossrefADSWeb of Science®Google Scholar Babuška I and Miller A. The post-processing approach in the finite element method - Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Meth. Eng. 20 (1984) 1085– 1109. Wiley Online LibraryADSWeb of Science®Google Scholar Babuška I and Oden JT. Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193 (2004) 4057– 4066. CrossrefADSWeb of Science®Google Scholar Babuška I and Oden JT. Reliability of computer predictions: can they be trusted? Int. J. Numer. Anal. Modeling 3 (2006) 255– 272. Web of Science®Google Scholar Babuška I and Osborn J. Eigenvalue problems. In: Handbook of Numerical Analysis, P.G. Ciarlet and J. L. Lions, editors. Elsevier, North-Holland, Amsterdam, Vol. II, 1991, 642– 787. Google Scholar Babuška I and Rheinboldt WC. A posteriori error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736– 754. CrossrefADSWeb of Science®Google Scholar Babuška I and Scapolla T. Benchmark computation and performance evaluation for a rhombic plate bending problem. Int. J. Numer. Meth. Eng. 28 (1989) 155– 179. Wiley Online LibraryADSWeb of Science®Google Scholar Babuška I and Silva RS. Numerical treatment of engineering problems with uncertainties. The fuzzy set approach and its application to the heat exchanger problem. Int. J. Numer. Meth. Eng. Published in electronic form in 2010. To appear in 2011. Wiley Online LibraryADSWeb of Science®Google Scholar Babuška I and Strouboulis T. The Finite Element Method and its Reliability. Oxford University Press, Oxford, 2001. Google Scholar Babuška I and Suri M. The p- and hp-versions of the finite element method: an overview. Comput. Methods: Appl. Mech. Eng. 80 (1990) 5– 26. CrossrefADSWeb of Science®Google Scholar Babuška I and Szabó B. On the generalized plane strain problem in thermoelasticity. Comput. Methods Appl. Mech. Eng. 195 (2006) 5390– 5402. CrossrefADSWeb of Science®Google Scholar Babuška I and Tempone R. Static frame challenge problem: summary. Comput. Methods Appl. Mech. Eng. 197 (2008) 2572– 2577. CrossrefADSWeb of Science®Google Scholar Babuška I, Whiteman JR and Strouboulis T. Finite Elements: An Introduction to the Method and Error Estimation. Oxford University Press, Oxford, 2010. Google Scholar Bathias C and Paris PC. Gigacycle Fatigue in Mechanical Practice. Marcel Dekker, New York, 2005. Google Scholar Brezzi F and Fortin M. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991. CrossrefGoogle Scholar Chen Q and Babuška I. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128 (1995) 405– 417. CrossrefADSWeb of Science®Google Scholar Ciarlet PG. The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2002. CrossrefGoogle Scholar Clough RW and Tocher JL. Finite element stiffness matrices for analysis of plate bending. In: Proceedings of Conference on Matrix Methods in Structural Mechanics, Report AFFDL-TR-66-80, Wright–Patterson Air Force Base, Ohio (1966) 515– 545. Google Scholar Corum JM, Bolt SE, Greenstreet WL and Gwaltney RC. Theoretical and experimental stress analysis of ORNL thin-shell cylinder-to-cylinder model No. 1. Oak Ridge National Laboratory Report ORNL 4553, Oak Ridge, TN, (October 1972). Google Scholar Costabel M, Dauge M and Suri M. Numerical approximation of a singularly perturbed contact problem. Comput. Methods Appl. Mech. Eng. 157 (1998) 349– 363. CrossrefADSWeb of Science®Google Scholar Cowper GR. The shear coefficient in Timoshenko's beam theory. J. App. Mech. 33 (June 1966) 335– 340. CrossrefADSWeb of Science®Google Scholar Demkowicz L. Computing with hp-adaptive finite elements. Vol. 1: One and two-dimensional elliptic and Maxwell problems. Chapman & Hall/CRC Boca Raton 2007. Google Scholar Demmel JW. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997. CrossrefGoogle Scholar Düster A. High order finite elements for three-dimensional thin-walled nonlinear continua. Dissertation. Technische Universität München, 2002. Google Scholar Düster A and Rank E. The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput. Methods Appl. Mech. Eng. 190 (2001) 1925– 1935. CrossrefADSWeb of Science®Google Scholar Ferson S, Oberkampf WL and Ginzburg L. Model validation and predictive capability for the thermal challenge problem. Comput. Methods Appl. Mech. Eng. 197 (2008) 2408– 2430. CrossrefADSWeb of Science®Google Scholar Fung YC. Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs, NJ, 1965. Google Scholar Girkmann K. Flächentragwerke, 4th edition. Springer-Verlag, Vienna, 1956. CrossrefGoogle Scholar Golub GH and Van Loan CF. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 1989. Google Scholar Gui B and Babuška I. The h-, p- and hp-versions of the FEM in 1 dimension. Parts I, II, and III. Num. Math. 80 (1986) 577– 683. CrossrefWeb of Science®Google Scholar Guide for Verification and Validation in Computational Solid Mechanics. ASME V&V 10-2006, American Society of Mechanical Engineers, New York (2006). Google Scholar Gwaltney RC, Corum JM, Bolt SE and Bryson JW. Experimental stress analysis of cylinder-to-cylinder shell models and comparisons with theoretical predictions. J. Pressure Vessel Technol. (1976) 283– 290. CrossrefGoogle Scholar Hu S and Pagano NJ. On the use of a plane strain model to solve generalized plane strain problems. J. Appl. Mech. 64 (1997) 236– 238. CrossrefADSWeb of Science®Google Scholar Kanninen MF and Popelar CH. Advanced Fracture Mechanics. Oxford University Press, New York, 1985. Google Scholar Karniadakis GE and Sherwin SJ. Spectral/hp Element Methods for CFD. Oxford University Press, Oxford, 1999. Google Scholar Királyfalvi G. and Szabó B. Quasi-regional mapping for the p-version of the finite element method. Finite Elem. Anal. Des. 27 (1997) 85– 97. CrossrefWeb of Science®Google Scholar Kleindorfer GB, O'Neill R and Ganeshan R. Validation in Simulation: Various Positions in the Philosophy of Science. Management Science. 44 (1998) 1087– 1099. CrossrefWeb of Science®Google Scholar Kozlov VA, Mazia VG and Rossmann J. Spectral Problems Associated with Corner Singularities of Solutions of Elliptic Equations. American Mathematical Society, Providence, RI, 2000. CrossrefGoogle Scholar Kuhn P and Hardrath HF. An engineering method for estimating notch-size effect in fatigue tests of steel. NACA Technical Note 2805 (1952). Google Scholar Lazzeri L and Mariani U. Application of damage tolerance principles to the design of helicopters. Int. J. Fatigue 31 (2009) 1039– 1045. CrossrefWeb of Science®Google Scholar Mikhlin SG. The Numerical Performance of Variational Methods. Wolters-Noordhoff, Groningen, l971. Google Scholar Military Handbook MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures. US Department of Defense, December 1, 1998. Google Scholar Morley LSD. Skew Plates and Structures. Macmillan, New York, 1963. Google Scholar Muskhelishvili NI. Some Basic Problems of the Mathematical Theory of Elasticity, 3rd edition Published in Russian in 1949. English translation by J. R. M. Radok. Noordhoff, Groningen, 1953. Google Scholar Naghdi PM. Foundations of elastic shell theory. In: Progress in Solid Mechanics, Vol. 4. North-Holland, Amsterdam, 1963. Google Scholar Nazarov SA and Plamenevsky BA. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter & Co. Berlin 1994. CrossrefGoogle Scholar Nervi S and Szabó BA. On the estimation of residual stresses by the crack compliance method. Comput. Methods Appl. Mech. Eng. 196 (2007) 3577– 3584. CrossrefADSWeb of Science®Google Scholar Nervi S, Szabó BA and Young KA. Prediction of distortion of airframe components made from aluminum plates. AIAA J. 47 (2009) 1635– 1641. CrossrefADSWeb of Science®Google Scholar Neuber H. Kerbspannungslehre. Springer-Verlag, Berlin, 1937. CrossrefGoogle Scholar Novozhilov VV. Thin Shell Theory. Noordhoff, Groningen, 1964. CrossrefGoogle Scholar Oberkampf WL and Roy CJ. Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge, 2010. CrossrefWeb of Science®Google Scholar Oberkampf WL and Trucano TG. Verification and validation benchmarks. Sandia Report SAND2007-0853 (February 2007). Google Scholar Oreskes N, Shrader-Frechette K and Belitz K. Verification, validation and confirmation of numerical models in the earth sciences. Nature 263 (1994) 641– 646. CASPubMedWeb of Science®Google Scholar Osgood CC. Fatigue Design. John Wiley & Sons, Inc., New York, 1970. Google Scholar Overgaard V and Hutchinson JW. Effect of T-stress on mode I crack growth resistance in a ductile solid. Int. J. Solids Struct. 31 (1994) 823– 833. CrossrefWeb of Science®Google Scholar Páczelt I and Mróz Z. Optimal shape of contact interfaces due to wear in the steady relative motion. Int. J. Solids Struct. 44 (2006) 1– 30. Google Scholar Páczelt I, Szabó BA and Szabó T. Solution of contact problem using the hp-version of the finite element method. Comput. Math. App. 38 (1999) 49– 69. CrossrefWeb of Science®Google Scholar [58] Papadakis PJ and Babuška I. A numerical procedure for the determination of certain quantities related to the stress intensity factors in two-dimensional elasticity. Comput. Methods Appl. Mech. Eng. 122 (1995) 69– 92. CrossrefADSWeb of Science®Google Scholar Paris PC, Gomez MP and Anderson WE. A rational analytic theory of fatigue. Trend Eng. 13 (1961) 9– 14. Google Scholar Peterson RE. Stress Concentration Factors. John Wiley & Sons, Inc., New York, 1974. Google Scholar Petroski H. To Engineer is Human. Vintage, New York, 1992. Google Scholar Petroski H. Design Paradigms: Case Histories of Error and Judgment in Engineering. Cambridge University Press, New York, 1994. CrossrefGoogle Scholar Pitkäranta J, Matache A-M and Schwab C. Fourier mode analysis of layers in shallow shell deformation. Comput. Methods Appl. Mech. Eng. 190 (2001) 2943– 2975. CrossrefADSWeb of Science®Google Scholar Polyanin AD. Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC Press, Boca Raton, FL, 2002. Google Scholar Rank E and Babuška I. An expert system for the optimal mesh design in the hp-version of the finite element method. Int. J. Numer. Meth. Eng. 24 (1987) 2087– 2106. Wiley Online LibraryADSWeb of Science®Google Scholar Reddy JN. An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford, 2004. CrossrefGoogle Scholar Rektorys K. Variational Methods in Mathematics, Science and Engineering, 2nd edition, Reidel, Dordrecht 1980. Google Scholar Roache PJ. Verification and Validation in Computational Science and Engineering. Hermosa, Socorro, NM, 1998, pp. 403– 412. Google Scholar Schijve J. Fatigue of Structures and Material, 2nd edition. Springer-Verlag, Berlin, 2009. CrossrefGoogle Scholar Schwab C. p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998. Google Scholar Schwab C, Suri M and Xenophontos C. The hp finite element method for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Eng. 157 (1998) 311– 333. CrossrefADSWeb of Science®Google Scholar Simo JC and Hughes TJR. Computational Inelasticity. Springer-Verlag, New York, 1998. Google Scholar Simo JC and Laursen TA. An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42 (1992) 97– 116. CrossrefWeb of Science®Google Scholar Sivia DS. Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford, 1996. Google Scholar Sokolnikoff IS. Mathematical Theory of Elasticity, 2nd edition. McGraw-Hill, New York, 1956. Google Scholar Suresh S. Fatigue of Materials, 2nd edition. Cambridge University Press, Cambridge, 1998. CrossrefGoogle Scholar Szabó B and Actis R. On the importance and uses of feedback information in FEA. Appl. Numer. Math. 52 (2005) 219– 234. CrossrefWeb of Science®Google Scholar Szabó B and Actis R. On the role of hierarchic spaces and models in verification and validation. Comput. Methods Appl. Mech. Eng. 198 (2009) 1273– 1280. CrossrefADSWeb of Science®Google Scholar Szabó BA and Babuška I. Computation of the amplitude of stress singular terms for cracks and reentrant corners. In: Fracture Mechanics: Nineteenth Symposium ASTM STP 969, T. A. Cruse, editor, American Society for Testing and Materials, Philadelphia, 1988, pp. 101– 124. CrossrefWeb of Science®Google Scholar Szabó B and Babuška I. Finite Element Analysis. John Wiley & Sons, Inc., New York, 1991. Google Scholar Szabó B, Babuška I, Pitkäranta J and Nervi S. The problem of verification with reference to the Girkmann problem. Eng. Comput. 26 (2010) 171– 183. doi: 10.1007/s00366-009-0155-0. CrossrefWeb of Science®Google Scholar Szabó B, Düster A and Rank E. The p-version of the Finite Element Method. In: Encyclopedia of Computational Mechanics. Volume 1: Fundamentals, E. Stein, R. de Borst and T. J. R. Hughes, editors. John Wiley & Sons, Ltd, Chichester, 2004, Chapter 5. Google Scholar [83] Szabó BA and Muntges DE. Procedures for the verification and validation of working models for structural shells. J. Appl. Mech. 72 (2005) 907– 915. CrossrefADSWeb of Science®Google Scholar Szabó BA and Sahrmann GJ. Hierarchic plate and shell models based on p-extension. Int. J. Numer. Meth. Eng. 26 (1988) 1855– 1881. Wiley Online LibraryADSWeb of Science®Google Scholar Szabó BA and Yosibash Z. Numerical analysis of singularities in two dimension. Part 2: Computation of generalized flux/stress intensity factors. Int. J. Numer. Meth. Eng. 39 (1996) 409– 434. Wiley Online LibraryADSWeb of Science®Google Scholar Taylor D. The Theory of Critical Distance: A New Perspective in Fracture Mechanics. Elsevier, Amsterdam, 2007. Google Scholar Timoshenko S and Goodier JN. Theory of Elasticity, 2nd edition. McGraw-Hill, New York, 1951. Google Scholar Timoshenko S and Woinowsky-Krieger S. Theory of Plates and Shells, 2nd edition. McGraw-Hill, New York, 1959. Web of Science®Google Scholar Vasilopoulos D. On the determination of higher order terms of singular elastic stress fields near corners. Numer. Math. 53 (1998) 51– 95. CrossrefWeb of Science®Google Scholar Vigilante VN, Underwood JH and Crayon D. Use of instrumented bolt and constant displacement bolt-loaded specimen to measure in-situ hydrogen crack growth in high-strength steels. In: Fatigue and In: Fracture Mechanics: 30th Volume, ASTM STP 1360, P.C. Parisand K.L. Jerina, editors, American Society for Testing and Material, West Conshohocken, PA, 2000, pp. 377– 387. Web of Science®Google Scholar Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. ASTM STP 462. American Society for Testing and Materials, Philadelphia, 1970. Google Scholar Wriggers P. Computational Contact Mechanic, 2nd edition. Springer-Verlag, Berlin and Heidelberg, 2006. CrossrefGoogle Scholar Yosibash Z and Szabó BA. Generalized stress intensity factors in linear elastostatics. Int. J. Fract. 72 (1995) 223– 240. CrossrefWeb of Science®Google Scholar Yosibash Z and Szabó BA. Numerical analysis of singularities in two dimension. Part 1: Computation of eigenpairs. Int. J. Numer. Meth. Eng. 38 (1995) 2055– 2082. Wiley Online LibraryADSWeb of Science®Google Scholar Young WC and Budynas RG. Roark's Formulas for Stress and Strain, 7th edition. McGraw-Hill, New York, 2002. Google Scholar Zienkiewicz OC and Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Meth. Eng. 33 (1992) 1331– 1364. Wiley Online LibraryADSWeb of Science®Google Scholar Zienkiewicz OC and Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Meth. Eng. 33 (1992) 1365– 1382. Wiley Online LibraryADSWeb of Science®Google Scholar Zienkiewicz OC and Zhu JZ. The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Meth. Appl. Mech. Eng. 101 (1992) 207– 224. CrossrefADSWeb of Science®Google Scholar Introduction to Finite Element Analysis: Formulation, Verification and Validation ReferencesRelatedInformation" @default.
- W4212852871 created "2022-02-24" @default.
- W4212852871 date "2011-03-08" @default.
- W4212852871 modified "2023-09-27" @default.
- W4212852871 title "Bibliography" @default.
- W4212852871 cites W1520984243 @default.
- W4212852871 cites W1522335775 @default.
- W4212852871 cites W1535495633 @default.
- W4212852871 cites W1550152218 @default.
- W4212852871 cites W1592510075 @default.
- W4212852871 cites W1607663648 @default.
- W4212852871 cites W1734040340 @default.
- W4212852871 cites W1968615009 @default.
- W4212852871 cites W1969059721 @default.
- W4212852871 cites W1978788279 @default.
- W4212852871 cites W1979949177 @default.
- W4212852871 cites W1980883268 @default.
- W4212852871 cites W1980964769 @default.
- W4212852871 cites W1989594010 @default.
- W4212852871 cites W1992121599 @default.
- W4212852871 cites W2002796233 @default.
- W4212852871 cites W2012098365 @default.
- W4212852871 cites W2012396217 @default.
- W4212852871 cites W2023630575 @default.
- W4212852871 cites W2024288157 @default.
- W4212852871 cites W2024753911 @default.
- W4212852871 cites W2027092548 @default.
- W4212852871 cites W2031412580 @default.
- W4212852871 cites W2031911515 @default.
- W4212852871 cites W2034190373 @default.
- W4212852871 cites W2041640855 @default.
- W4212852871 cites W2044892973 @default.
- W4212852871 cites W2048057609 @default.
- W4212852871 cites W2049337170 @default.
- W4212852871 cites W2049357286 @default.
- W4212852871 cites W2049996170 @default.
- W4212852871 cites W2053133088 @default.
- W4212852871 cites W2056974453 @default.
- W4212852871 cites W2065268092 @default.
- W4212852871 cites W2074406962 @default.
- W4212852871 cites W2076413140 @default.
- W4212852871 cites W2082567218 @default.
- W4212852871 cites W2092185402 @default.
- W4212852871 cites W2102727531 @default.
- W4212852871 cites W2103068352 @default.
- W4212852871 cites W2115824538 @default.
- W4212852871 cites W2135087420 @default.
- W4212852871 cites W2135627908 @default.
- W4212852871 cites W2138784900 @default.
- W4212852871 cites W2140793912 @default.
- W4212852871 cites W2148662281 @default.
- W4212852871 cites W2160640335 @default.
- W4212852871 cites W2169980171 @default.
- W4212852871 cites W2505585705 @default.
- W4212852871 cites W2555826189 @default.
- W4212852871 cites W2792013640 @default.
- W4212852871 cites W3149667697 @default.
- W4212852871 cites W4205634890 @default.
- W4212852871 cites W4206645564 @default.
- W4212852871 cites W4246394460 @default.
- W4212852871 cites W4253194302 @default.
- W4212852871 cites W4298280660 @default.
- W4212852871 cites W4299968561 @default.
- W4212852871 cites W4301491118 @default.
- W4212852871 doi "https://doi.org/10.1002/9781119993834.biblio" @default.
- W4212852871 hasPublicationYear "2011" @default.
- W4212852871 type Work @default.
- W4212852871 citedByCount "0" @default.
- W4212852871 crossrefType "other" @default.
- W4212852871 hasBestOaLocation W42128528711 @default.
- W4212852871 hasConcept C41008148 @default.
- W4212852871 hasConceptScore W4212852871C41008148 @default.
- W4212852871 hasLocation W42128528711 @default.
- W4212852871 hasOpenAccess W4212852871 @default.
- W4212852871 hasPrimaryLocation W42128528711 @default.
- W4212852871 hasRelatedWork W2096946506 @default.
- W4212852871 hasRelatedWork W2130043461 @default.
- W4212852871 hasRelatedWork W2350741829 @default.
- W4212852871 hasRelatedWork W2358668433 @default.
- W4212852871 hasRelatedWork W2376932109 @default.
- W4212852871 hasRelatedWork W2382290278 @default.
- W4212852871 hasRelatedWork W2390279801 @default.
- W4212852871 hasRelatedWork W2748952813 @default.
- W4212852871 hasRelatedWork W2899084033 @default.
- W4212852871 hasRelatedWork W3004735627 @default.
- W4212852871 isParatext "false" @default.
- W4212852871 isRetracted "false" @default.
- W4212852871 workType "other" @default.