Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212886002> ?p ?o ?g. }
- W4212886002 abstract "Proton therapy requires accurate dose calculation for treatment planning to ensure conformal doses are precisely delivered to tumor target. This study proposes a fully connected neural network (FCNN) to figure out the underlying correlation between dual-energy computed tomography (DECT) parametric maps, material mass density and stopping power ratio (SPR) maps, which are essential for proton analytical and Monte Carlo dose calculations. A Siemens SOMATOM Definition Edge scanner (Siemens Medical Solutions, Germany) was used to acquire the DECT images with TwinBeam protocols. The effective atomic number maps, electron density maps, and virtual mono-energetic images were derived by Siemens Syngo.Via. The proposed FCNN includes 9 hidden layers, 200 hidden units, and nonlinear activation functions with layer normalization to prevent gradient vanishing issues of deep neural networks. The model was trained using multiple scanned data from a CIRS electron density phantom 062M with different inserts (Computerized Imaging Reference Systems, Inc., Norfolk, VA) and tested using a CIRS M701 anthropomorphic phantom. For the anthropomorphic phantom, the relative mean absolute errors of the density map were 0.45%, 0.77%, 0.23%, and 1.15% for lung, soft tissue, brain, and bone, while the SPR errors were 0.7%, 1.59%, 1.56%, and 1.23%, respectively. The results indicated that FCNN-based DECT parametric mapping generated robust and accurate mass density and SPR maps with minimum impacts by CT noise due to the usage of millions of training data. The proposed FCNN-based method potentially can improve proton range uncertainty by offering accurate material properties converted from DECT, especially for lung and bone." @default.
- W4212886002 created "2022-02-24" @default.
- W4212886002 creator A5005298316 @default.
- W4212886002 creator A5006051150 @default.
- W4212886002 creator A5009731683 @default.
- W4212886002 creator A5011903902 @default.
- W4212886002 creator A5032192226 @default.
- W4212886002 creator A5046225712 @default.
- W4212886002 creator A5049656223 @default.
- W4212886002 creator A5055954787 @default.
- W4212886002 creator A5062115647 @default.
- W4212886002 creator A5089969477 @default.
- W4212886002 date "2022-04-04" @default.
- W4212886002 modified "2023-10-05" @default.
- W4212886002 title "Using a neural network to enhance dual-energy computed tomography parametric mapping for proton therapy" @default.
- W4212886002 cites W1926920987 @default.
- W4212886002 cites W1999189079 @default.
- W4212886002 cites W2001881071 @default.
- W4212886002 cites W2015282797 @default.
- W4212886002 cites W2026421256 @default.
- W4212886002 cites W2040337964 @default.
- W4212886002 cites W2089573650 @default.
- W4212886002 cites W2137983211 @default.
- W4212886002 cites W2536323247 @default.
- W4212886002 cites W2784795157 @default.
- W4212886002 cites W2803663917 @default.
- W4212886002 cites W3112402233 @default.
- W4212886002 cites W3124366161 @default.
- W4212886002 cites W3133101381 @default.
- W4212886002 cites W3174518097 @default.
- W4212886002 cites W3208671773 @default.
- W4212886002 cites W4231428599 @default.
- W4212886002 cites W4237616275 @default.
- W4212886002 cites W4239470942 @default.
- W4212886002 cites W4240772283 @default.
- W4212886002 doi "https://doi.org/10.1117/12.2611891" @default.
- W4212886002 hasPublicationYear "2022" @default.
- W4212886002 type Work @default.
- W4212886002 citedByCount "1" @default.
- W4212886002 countsByYear W42128860022022 @default.
- W4212886002 crossrefType "proceedings-article" @default.
- W4212886002 hasAuthorship W4212886002A5005298316 @default.
- W4212886002 hasAuthorship W4212886002A5006051150 @default.
- W4212886002 hasAuthorship W4212886002A5009731683 @default.
- W4212886002 hasAuthorship W4212886002A5011903902 @default.
- W4212886002 hasAuthorship W4212886002A5032192226 @default.
- W4212886002 hasAuthorship W4212886002A5046225712 @default.
- W4212886002 hasAuthorship W4212886002A5049656223 @default.
- W4212886002 hasAuthorship W4212886002A5055954787 @default.
- W4212886002 hasAuthorship W4212886002A5062115647 @default.
- W4212886002 hasAuthorship W4212886002A5089969477 @default.
- W4212886002 hasConcept C104293457 @default.
- W4212886002 hasConcept C105795698 @default.
- W4212886002 hasConcept C117251300 @default.
- W4212886002 hasConcept C120665830 @default.
- W4212886002 hasConcept C121332964 @default.
- W4212886002 hasConcept C126838900 @default.
- W4212886002 hasConcept C136886441 @default.
- W4212886002 hasConcept C144024400 @default.
- W4212886002 hasConcept C150432741 @default.
- W4212886002 hasConcept C154945302 @default.
- W4212886002 hasConcept C187954543 @default.
- W4212886002 hasConcept C19165224 @default.
- W4212886002 hasConcept C19499675 @default.
- W4212886002 hasConcept C2779244869 @default.
- W4212886002 hasConcept C2779751349 @default.
- W4212886002 hasConcept C2989005 @default.
- W4212886002 hasConcept C33923547 @default.
- W4212886002 hasConcept C41008148 @default.
- W4212886002 hasConcept C50644808 @default.
- W4212886002 hasConcept C544519230 @default.
- W4212886002 hasConcept C54516573 @default.
- W4212886002 hasConcept C555944384 @default.
- W4212886002 hasConcept C62520636 @default.
- W4212886002 hasConcept C71924100 @default.
- W4212886002 hasConcept C76155785 @default.
- W4212886002 hasConceptScore W4212886002C104293457 @default.
- W4212886002 hasConceptScore W4212886002C105795698 @default.
- W4212886002 hasConceptScore W4212886002C117251300 @default.
- W4212886002 hasConceptScore W4212886002C120665830 @default.
- W4212886002 hasConceptScore W4212886002C121332964 @default.
- W4212886002 hasConceptScore W4212886002C126838900 @default.
- W4212886002 hasConceptScore W4212886002C136886441 @default.
- W4212886002 hasConceptScore W4212886002C144024400 @default.
- W4212886002 hasConceptScore W4212886002C150432741 @default.
- W4212886002 hasConceptScore W4212886002C154945302 @default.
- W4212886002 hasConceptScore W4212886002C187954543 @default.
- W4212886002 hasConceptScore W4212886002C19165224 @default.
- W4212886002 hasConceptScore W4212886002C19499675 @default.
- W4212886002 hasConceptScore W4212886002C2779244869 @default.
- W4212886002 hasConceptScore W4212886002C2779751349 @default.
- W4212886002 hasConceptScore W4212886002C2989005 @default.
- W4212886002 hasConceptScore W4212886002C33923547 @default.
- W4212886002 hasConceptScore W4212886002C41008148 @default.
- W4212886002 hasConceptScore W4212886002C50644808 @default.
- W4212886002 hasConceptScore W4212886002C544519230 @default.
- W4212886002 hasConceptScore W4212886002C54516573 @default.
- W4212886002 hasConceptScore W4212886002C555944384 @default.
- W4212886002 hasConceptScore W4212886002C62520636 @default.
- W4212886002 hasConceptScore W4212886002C71924100 @default.