Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212891503> ?p ?o ?g. }
- W4212891503 endingPage "103747" @default.
- W4212891503 startingPage "103747" @default.
- W4212891503 abstract "The use of satellite images is a widespread technique for estimating soil attributes. However, what is the potential of satellite data on the prediction of soil weathering indices? How much in their performance is affected by spectral mixing and data resolution? There is no consensus for answering these questions. Hence, the main objectives of this work were: i) to show the difference of spectral signature between prepared and field-condition samples; ii) to compare the convoluted data from laboratory spectroradiometer with the spectral signatures from Sentinel-2 and Landsat-8 satellites; and iii) to build and evaluate predictive models for soil weathering indices using diffuse reflectance spectroscopy from samples under natural conditions, air-dried-sieved and from satellite images. Soil samples were collected from the first 1-cm depth in 27 locations along seven catenas located in a 163-ha area in São Paulo State, Brazil. The samples were analyzed by a Vis-NIR-SWIR spectrometer without sample preparation (field conditions) and after being air-dried and sieved (prepared). The air-dried-sieved samples were also analyzed by an X-ray fluorescence equipment. Reflectance data were obtained from Sentinel and Landsat for the same 27 locations. The spectral data from the lab were convoluted to respective bands of the real satellite data. Predictive models for soil weathering indices using the convoluted laboratory data and the satellite data were also built and compared. The reflectance of samples under field conditions contrasted significantly between soils derived from basalt and sedimentary rocks. In general, the reflectance intensity of prepared samples was 80% higher than that observed for field-conditions, which can be explained by the roughness and the structure effect. However, some cases showed an opposite trend, with a smaller relative reflectance from the air-dried-sieved samples. These trends support the hypothesis of aggregates heterogeneity and clay occlusion. The sample preparation can increase or decrease the reflectance of the soil surface material, depending, mainly, on roughness, soil structure and particles occlusion by the structure. The Landsat spectral signatures were more similar to those from convoluted laboratory than to the Sentinel ones. The satellite performance on the estimation of the soil weathering indices is comparable to those from convoluted laboratory data, but it is limited by spectral resolution . Sentinel and Landsat achieved ratio of performance to interquartile distance (RPIQ) from 1.53 to 2.38 and from 1.56 to 2.42 on soil weathering indices estimation, respectively. The models for Plagioclase Index of Alteration (PIA) and Si/Ti [Si and (Ti and Al) ratio] indices were considered the best ones (RPIQ from 2.17 to 3.6; and RPIQ from 1.90 to 5.56; respectively) for both laboratory and satellite data; in turn, Si/Al, Si (Al + Fe) and Chemical Index of Alteration (CIA) indices performed poorly/reasonably (RPIQ <1.92). • The satellite performance was similar to those from convoluted laboratory data. • Sample preparation can change the reflectance of the soil surface. • The L samples showed a higher reflectance. • Landsat curves are more similar to those obtained in laboratory. • Spectral curves from Sentinel showed pronounced bands on the visible range." @default.
- W4212891503 created "2022-02-24" @default.
- W4212891503 creator A5005833201 @default.
- W4212891503 creator A5006733842 @default.
- W4212891503 creator A5012568647 @default.
- W4212891503 creator A5056213122 @default.
- W4212891503 creator A5063567662 @default.
- W4212891503 creator A5074518521 @default.
- W4212891503 creator A5085972054 @default.
- W4212891503 creator A5087868781 @default.
- W4212891503 date "2022-04-01" @default.
- W4212891503 modified "2023-09-22" @default.
- W4212891503 title "Surface reflectance and pXRF for assessing soil weathering indexes" @default.
- W4212891503 cites W1656198309 @default.
- W4212891503 cites W186329053 @default.
- W4212891503 cites W1980600502 @default.
- W4212891503 cites W1984214033 @default.
- W4212891503 cites W1986530877 @default.
- W4212891503 cites W1992450936 @default.
- W4212891503 cites W2004838504 @default.
- W4212891503 cites W2009931761 @default.
- W4212891503 cites W2016223358 @default.
- W4212891503 cites W2020735254 @default.
- W4212891503 cites W2024235804 @default.
- W4212891503 cites W2025406182 @default.
- W4212891503 cites W2038782607 @default.
- W4212891503 cites W2043359577 @default.
- W4212891503 cites W2044418816 @default.
- W4212891503 cites W2068137323 @default.
- W4212891503 cites W2068562538 @default.
- W4212891503 cites W2073858026 @default.
- W4212891503 cites W2083304964 @default.
- W4212891503 cites W2116395914 @default.
- W4212891503 cites W2154496909 @default.
- W4212891503 cites W218078007 @default.
- W4212891503 cites W2195315482 @default.
- W4212891503 cites W2196579671 @default.
- W4212891503 cites W2218047931 @default.
- W4212891503 cites W2408574195 @default.
- W4212891503 cites W2511626303 @default.
- W4212891503 cites W2563958088 @default.
- W4212891503 cites W2594522244 @default.
- W4212891503 cites W2767899554 @default.
- W4212891503 cites W2770017793 @default.
- W4212891503 cites W2796140888 @default.
- W4212891503 cites W2799759245 @default.
- W4212891503 cites W2888455247 @default.
- W4212891503 cites W2888896355 @default.
- W4212891503 cites W2892782797 @default.
- W4212891503 cites W2893324711 @default.
- W4212891503 cites W2894569595 @default.
- W4212891503 cites W2915098590 @default.
- W4212891503 cites W2922433635 @default.
- W4212891503 cites W2962897470 @default.
- W4212891503 cites W2966251231 @default.
- W4212891503 cites W2972853490 @default.
- W4212891503 cites W2996380412 @default.
- W4212891503 cites W3012278037 @default.
- W4212891503 cites W3035685475 @default.
- W4212891503 cites W3126309867 @default.
- W4212891503 cites W3187271846 @default.
- W4212891503 cites W4200298772 @default.
- W4212891503 doi "https://doi.org/10.1016/j.jsames.2022.103747" @default.
- W4212891503 hasPublicationYear "2022" @default.
- W4212891503 type Work @default.
- W4212891503 citedByCount "1" @default.
- W4212891503 countsByYear W42128915032022 @default.
- W4212891503 crossrefType "journal-article" @default.
- W4212891503 hasAuthorship W4212891503A5005833201 @default.
- W4212891503 hasAuthorship W4212891503A5006733842 @default.
- W4212891503 hasAuthorship W4212891503A5012568647 @default.
- W4212891503 hasAuthorship W4212891503A5056213122 @default.
- W4212891503 hasAuthorship W4212891503A5063567662 @default.
- W4212891503 hasAuthorship W4212891503A5074518521 @default.
- W4212891503 hasAuthorship W4212891503A5085972054 @default.
- W4212891503 hasAuthorship W4212891503A5087868781 @default.
- W4212891503 hasConcept C108597893 @default.
- W4212891503 hasConcept C120665830 @default.
- W4212891503 hasConcept C121332964 @default.
- W4212891503 hasConcept C127313418 @default.
- W4212891503 hasConcept C159390177 @default.
- W4212891503 hasConcept C17409809 @default.
- W4212891503 hasConcept C1965285 @default.
- W4212891503 hasConcept C199289684 @default.
- W4212891503 hasConcept C2524010 @default.
- W4212891503 hasConcept C2776799497 @default.
- W4212891503 hasConcept C33923547 @default.
- W4212891503 hasConcept C40724407 @default.
- W4212891503 hasConceptScore W4212891503C108597893 @default.
- W4212891503 hasConceptScore W4212891503C120665830 @default.
- W4212891503 hasConceptScore W4212891503C121332964 @default.
- W4212891503 hasConceptScore W4212891503C127313418 @default.
- W4212891503 hasConceptScore W4212891503C159390177 @default.
- W4212891503 hasConceptScore W4212891503C17409809 @default.
- W4212891503 hasConceptScore W4212891503C1965285 @default.
- W4212891503 hasConceptScore W4212891503C199289684 @default.
- W4212891503 hasConceptScore W4212891503C2524010 @default.
- W4212891503 hasConceptScore W4212891503C2776799497 @default.