Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212895384> ?p ?o ?g. }
- W4212895384 endingPage "015032" @default.
- W4212895384 startingPage "015032" @default.
- W4212895384 abstract "Abstract State-of-the-art machine learning (ML) interatomic potentials use local representations of atomic environments to ensure linear scaling and size-extensivity. This implies a neglect of long-range interactions, most prominently related to electrostatics. To overcome this limitation, we herein present a ML framework for predicting charge distributions and their interactions termed kernel charge equilibration (kQEq). This model is based on classical charge equilibration (QEq) models expanded with an environment-dependent electronegativity. In contrast to previously reported neural network models with a similar concept, kQEq takes advantage of the linearity of both QEq and Kernel Ridge Regression to obtain a closed-form linear algebra expression for training the models. Furthermore, we avoid the ambiguity of charge partitioning schemes by using dipole moments as reference data. As a first application, we show that kQEq can be used to generate accurate and highly data-efficient models for molecular dipole moments." @default.
- W4212895384 created "2022-02-24" @default.
- W4212895384 creator A5025442671 @default.
- W4212895384 creator A5033163474 @default.
- W4212895384 creator A5034581758 @default.
- W4212895384 creator A5041078400 @default.
- W4212895384 creator A5044300693 @default.
- W4212895384 creator A5051484073 @default.
- W4212895384 date "2022-03-01" @default.
- W4212895384 modified "2023-10-17" @default.
- W4212895384 title "Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model" @default.
- W4212895384 cites W1596185547 @default.
- W4212895384 cites W1650728208 @default.
- W4212895384 cites W1984845825 @default.
- W4212895384 cites W1993383767 @default.
- W4212895384 cites W2002261888 @default.
- W4212895384 cites W2008517160 @default.
- W4212895384 cites W2008708918 @default.
- W4212895384 cites W2019281751 @default.
- W4212895384 cites W2025444507 @default.
- W4212895384 cites W2026301964 @default.
- W4212895384 cites W2029413789 @default.
- W4212895384 cites W2061453124 @default.
- W4212895384 cites W2067718414 @default.
- W4212895384 cites W2077181304 @default.
- W4212895384 cites W2080635178 @default.
- W4212895384 cites W2083415705 @default.
- W4212895384 cites W2083956694 @default.
- W4212895384 cites W2100275150 @default.
- W4212895384 cites W2104489082 @default.
- W4212895384 cites W2151334055 @default.
- W4212895384 cites W2155155530 @default.
- W4212895384 cites W2170006871 @default.
- W4212895384 cites W2527189750 @default.
- W4212895384 cites W2593724699 @default.
- W4212895384 cites W2620687153 @default.
- W4212895384 cites W2739439285 @default.
- W4212895384 cites W2755159604 @default.
- W4212895384 cites W2757878424 @default.
- W4212895384 cites W2768213699 @default.
- W4212895384 cites W2810026216 @default.
- W4212895384 cites W2884817966 @default.
- W4212895384 cites W2885841934 @default.
- W4212895384 cites W2900179474 @default.
- W4212895384 cites W2909595621 @default.
- W4212895384 cites W2923693308 @default.
- W4212895384 cites W2967766509 @default.
- W4212895384 cites W2971894235 @default.
- W4212895384 cites W2972006524 @default.
- W4212895384 cites W2976720228 @default.
- W4212895384 cites W3003486042 @default.
- W4212895384 cites W3033241142 @default.
- W4212895384 cites W3036812681 @default.
- W4212895384 cites W3043479795 @default.
- W4212895384 cites W3049272068 @default.
- W4212895384 cites W3086372695 @default.
- W4212895384 cites W3090555547 @default.
- W4212895384 cites W3093036756 @default.
- W4212895384 cites W3094905049 @default.
- W4212895384 cites W3099950071 @default.
- W4212895384 cites W3100839762 @default.
- W4212895384 cites W3101744125 @default.
- W4212895384 cites W3103502300 @default.
- W4212895384 cites W3104017686 @default.
- W4212895384 cites W3120580474 @default.
- W4212895384 cites W3121252325 @default.
- W4212895384 cites W3133931590 @default.
- W4212895384 cites W3141927472 @default.
- W4212895384 cites W3189164715 @default.
- W4212895384 cites W3197886297 @default.
- W4212895384 cites W3211304604 @default.
- W4212895384 doi "https://doi.org/10.1088/2632-2153/ac568d" @default.
- W4212895384 hasPublicationYear "2022" @default.
- W4212895384 type Work @default.
- W4212895384 citedByCount "13" @default.
- W4212895384 countsByYear W42128953842022 @default.
- W4212895384 countsByYear W42128953842023 @default.
- W4212895384 crossrefType "journal-article" @default.
- W4212895384 hasAuthorship W4212895384A5025442671 @default.
- W4212895384 hasAuthorship W4212895384A5033163474 @default.
- W4212895384 hasAuthorship W4212895384A5034581758 @default.
- W4212895384 hasAuthorship W4212895384A5041078400 @default.
- W4212895384 hasAuthorship W4212895384A5044300693 @default.
- W4212895384 hasAuthorship W4212895384A5051484073 @default.
- W4212895384 hasBestOaLocation W42128953841 @default.
- W4212895384 hasConcept C11413529 @default.
- W4212895384 hasConcept C114614502 @default.
- W4212895384 hasConcept C119857082 @default.
- W4212895384 hasConcept C121332964 @default.
- W4212895384 hasConcept C121864883 @default.
- W4212895384 hasConcept C13280743 @default.
- W4212895384 hasConcept C154945302 @default.
- W4212895384 hasConcept C159985019 @default.
- W4212895384 hasConcept C170122806 @default.
- W4212895384 hasConcept C173523689 @default.
- W4212895384 hasConcept C177293861 @default.
- W4212895384 hasConcept C185592680 @default.
- W4212895384 hasConcept C188082385 @default.