Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212897652> ?p ?o ?g. }
- W4212897652 endingPage "2298" @default.
- W4212897652 startingPage "2287" @default.
- W4212897652 abstract "This mini-review provides an update regarding the substantial progress that has been made in using single-particle cryo-EM to obtain high-resolution structures for proteins and other macromolecules whose particle sizes are smaller than 100 kDa. We point out that establishing the limits of what can be accomplished, both in terms of particle size and attainable resolution, serves as a guide for what might be expected when attempting to improve the resolution of small flexible portions of a larger structure using focused refinement approaches. These approaches, which involve computationally ignoring all but a specific, targeted region of interest on the macromolecules, is known as ‘masking and refining,' and it thus is the computational equivalent of the ‘divide and conquer' approach that has been used so successfully in X-ray crystallography. The benefit of masked refinement, however, is that one is able to determine structures in their native architectural context, without physically separating them from the biological connections that they require for their function. This mini-review also compares where experimental achievements currently stand relative to various theoretical estimates for the smallest particle size that can be successfully reconstructed to high resolution. Since it is clear that a substantial gap still remains between the two, we briefly recap the areas in which further improvement seems possible, both in equipment and in methods." @default.
- W4212897652 created "2022-02-24" @default.
- W4212897652 creator A5023367359 @default.
- W4212897652 creator A5045999939 @default.
- W4212897652 date "2021-10-28" @default.
- W4212897652 modified "2023-09-27" @default.
- W4212897652 title "Conquer by cryo-EM without physically dividing" @default.
- W4212897652 cites W139131824 @default.
- W4212897652 cites W171520057 @default.
- W4212897652 cites W1890431460 @default.
- W4212897652 cites W1967004359 @default.
- W4212897652 cites W1974978266 @default.
- W4212897652 cites W1977499446 @default.
- W4212897652 cites W1978288593 @default.
- W4212897652 cites W2011665065 @default.
- W4212897652 cites W2016864335 @default.
- W4212897652 cites W2017508876 @default.
- W4212897652 cites W2038443758 @default.
- W4212897652 cites W2049321497 @default.
- W4212897652 cites W2051925784 @default.
- W4212897652 cites W2072064506 @default.
- W4212897652 cites W2076155035 @default.
- W4212897652 cites W2087960949 @default.
- W4212897652 cites W2094719027 @default.
- W4212897652 cites W2109549604 @default.
- W4212897652 cites W2117423043 @default.
- W4212897652 cites W2146801942 @default.
- W4212897652 cites W2149360962 @default.
- W4212897652 cites W2149705812 @default.
- W4212897652 cites W2152562710 @default.
- W4212897652 cites W2160559764 @default.
- W4212897652 cites W2169689430 @default.
- W4212897652 cites W2236033324 @default.
- W4212897652 cites W2258912434 @default.
- W4212897652 cites W2409445934 @default.
- W4212897652 cites W2498179566 @default.
- W4212897652 cites W2725711670 @default.
- W4212897652 cites W2805746983 @default.
- W4212897652 cites W2902148700 @default.
- W4212897652 cites W2903629831 @default.
- W4212897652 cites W2912891417 @default.
- W4212897652 cites W2945319909 @default.
- W4212897652 cites W2950967305 @default.
- W4212897652 cites W2951611668 @default.
- W4212897652 cites W2953320394 @default.
- W4212897652 cites W2976102927 @default.
- W4212897652 cites W2993548729 @default.
- W4212897652 cites W3008857498 @default.
- W4212897652 cites W3010441732 @default.
- W4212897652 cites W3012865809 @default.
- W4212897652 cites W3013945060 @default.
- W4212897652 cites W3037107407 @default.
- W4212897652 cites W3039647328 @default.
- W4212897652 cites W3044597067 @default.
- W4212897652 cites W3048149073 @default.
- W4212897652 cites W3048320307 @default.
- W4212897652 cites W3087744307 @default.
- W4212897652 cites W3092349029 @default.
- W4212897652 cites W3093646295 @default.
- W4212897652 cites W3094051077 @default.
- W4212897652 cites W3119147846 @default.
- W4212897652 cites W3120667919 @default.
- W4212897652 cites W3127326657 @default.
- W4212897652 cites W3127416413 @default.
- W4212897652 cites W3127722007 @default.
- W4212897652 cites W3131300525 @default.
- W4212897652 cites W3131760520 @default.
- W4212897652 cites W3163413106 @default.
- W4212897652 cites W3164519054 @default.
- W4212897652 cites W3165766800 @default.
- W4212897652 cites W3165914225 @default.
- W4212897652 cites W3177131547 @default.
- W4212897652 cites W3184548922 @default.
- W4212897652 cites W3186956315 @default.
- W4212897652 cites W3187360417 @default.
- W4212897652 cites W3190079015 @default.
- W4212897652 cites W3193682077 @default.
- W4212897652 cites W3194321311 @default.
- W4212897652 cites W3195351407 @default.
- W4212897652 cites W3197037744 @default.
- W4212897652 cites W3202850407 @default.
- W4212897652 cites W4205397850 @default.
- W4212897652 doi "https://doi.org/10.1042/bst20210360" @default.
- W4212897652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34709401" @default.
- W4212897652 hasPublicationYear "2021" @default.
- W4212897652 type Work @default.
- W4212897652 citedByCount "3" @default.
- W4212897652 countsByYear W42128976522022 @default.
- W4212897652 countsByYear W42128976522023 @default.
- W4212897652 crossrefType "journal-article" @default.
- W4212897652 hasAuthorship W4212897652A5023367359 @default.
- W4212897652 hasAuthorship W4212897652A5045999939 @default.
- W4212897652 hasBestOaLocation W42128976522 @default.
- W4212897652 hasConcept C11413529 @default.
- W4212897652 hasConcept C121332964 @default.
- W4212897652 hasConcept C121864883 @default.
- W4212897652 hasConcept C127313418 @default.
- W4212897652 hasConcept C138268822 @default.