Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212908906> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4212908906 endingPage "257" @default.
- W4212908906 startingPage "253" @default.
- W4212908906 abstract "Free Access Bibliography William C. Bauldry, William C. BauldrySearch for more papers by this author Book Author(s):William C. Bauldry, William C. BauldrySearch for more papers by this author First published: 25 June 2009 https://doi.org/10.1002/9781118164419.biblio AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat BIBLIOGRAPHY Abramowitz, M. & Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York. 1965. Available online at http://www.math.sfu.ca/∼cbm/aands/frameindex.htm. Google Scholar Aigner, M. & Ziegler, G. M. Proofs from THE BOOK. Springer, New York, 2nd edition. 2001. CrossrefGoogle Scholar Aliprantis, C. D. & Burkinshaw, O. Problems in Real Analysis: A Workbook with Solutions. Academic Press, San Diego, CA. 1999. Google Scholar Anton, H., Bivens, I. C., & Davis, S. Calculus Early Transcendentals Single Variable. John Wiley & Sons, New York, 9th edition. 2009. Google Scholar Apostol, T. M. Calculus, volume II. John Wiley & Sons, New York, 2nd edition. 1969. Google Scholar Ball, W. W. R. A Short Account of the History of Mathematics. Macmillan, London, 5th edition. 1912. Facsimile edition, Sterling, New York. 2001. Google Scholar Bardi, J. S. The Calculus Wars. Thunder's Mouth Press, New York. 2006. Google Scholar Barnard, T. “Why Are Proofs Difficult?” The Mathematical Gazette, 84(501), 415– 422. 2000. CrossrefGoogle Scholar Bartle, R. G. The Elements of Integration and Lebesgue Measure. Wiley Classics Library. John Wiley & Sons, New York. 1995. Google Scholar Bauldry, W. C. “Fitting Logistics to the U.S. Population.” MapleTech, 4(3), 73– 77. 1997. Web of Science®Google Scholar Bauldry, W. C. & Fiedler, J. R. Calculus Projects with Maple. Brooks/Cole, Pacific Grove, CA, 2nd edition. 1996. Google Scholar Bauldry, W. C. & Schellenberg, D. “A Note on the ‘Mathematician's Birthday Calendar’.” NCCTM Centroid, 32(2), 6. 2006. Google Scholar Bear, H. S. A Primer of Lebesgue Integration. Academic Press, San Diego, CA. 1995. Google Scholar Bhatia, R. Fourier Series. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2005. Google Scholar Bichteler, K. Integration - A Functional Approach. Birkhäuser, New York. 1998. CrossrefGoogle Scholar Boas, R. P. A Primer of Real Functions. The Carus Mathematical Monographs. Math. Assoc. of America, Washington, DC. 1981. Google Scholar Bonar, D. D. & Khoury, M. J. Real Infinite Series. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2006. Google Scholar Bonnet, P. O. “Rémarques sur quelques intégrales définies.” J. Math. Pures Appl., 14, 249– 256. 1849. Google Scholar Borzellino, J. E. “Whose Limit Is It Anyway?” PRIMUS, XI(3), 265– 274. 2001. CrossrefGoogle Scholar Boyer, C. B. “Fermat's Integration of Xn.” National Mathematics Magazine, 20(1), 29– 32. 1945. CrossrefGoogle Scholar Boyer, C. B. The History of the Calculus and Its Conceptual Development. Dover, New York. 1959. Google Scholar Brabenec, R. L. Resources for the Study of Real Analysis. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2006. Web of Science®Google Scholar Bressoud, D. M. A Radical Approach to Real Analysis. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2005. Google Scholar Bressoud, D. M. A Radical Approach to Lebesgue's Theory of Integration. MAA Textbooks. Cambridge University Press, Washington, DC. 2008. Google Scholar Brown, J. “Mathematics, Physics and A Hard Day's Night.” CMS Notes, 36(6), 4– 8. 2004. Google Scholar Burk, F. E. A Garden of Integrals. Number 31 in Dolciani Mathematical Expositions. Math. Assoc. of America, Washington, DC. 2007. Google Scholar Burton, D. M. The History of Mathematics: An Introduction. McGraw-Hill, New York, 6th edition. 2007. Google Scholar Calkin, N. & Wilf, H. S. “Recounting the Rationals.” The American Mathematical Monthly, 107(4), 360– 363. 2000. CrossrefWeb of Science®Google Scholar Cauchy, A.-L. Cours d'Analyse de l'École Royale Polytechnique. Chez Debure frères, Paris. 1821. Available online at http://gallica.bnf.fr/ark:/12148/bpt6k29058v. Google Scholar Chae, S. B. Lebesgue Integration. Springer-Verlag, New York, 2nd edition. 1995. CrossrefGoogle Scholar Cohn, D. L. Measure Theory. Birkhäuser, New York. 1980. CrossrefGoogle Scholar Coolidge, J. L. “The Story of Tangents.” The American Mathematical Monthly, 58(7), 449– 462. 1951. CrossrefGoogle Scholar Crannell, A., LaRose, G., & Ratliff, T. Writing Projects for Mathematics Courses: Crushed Clowns, Cars & Coffee to Go. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2004. Google Scholar Davidson, K. R. & Donsig, A. P. Real Analysis with Real Applications. Prentice Hall, Upper Saddle River, NJ. 2002. Google Scholar Davis, P. J. “Leonhard Euler's Integral: A Historical Profile of the Gamma Function.” The American Mathematical Monthly, 66(10), 849– 869. 1959. CrossrefGoogle Scholar Davis, W., Portia, H., & Uhl, J. Calculus & Mathematica. Addison-Wesley, Reading, MA. 1994. Google Scholar Dehn, M. & Hellinger, E. D. “Certain Mathematical Achievements of James Gregory.” The American Mathematical Monthly, 50(3), 149– 163. 1943. CrossrefGoogle Scholar Diaconis, P. & Freedman, D. “An Elementary Proof of Stirling's Formula.” The American Mathematical Monthly, 93(2), 123– 125. 1986. CrossrefWeb of Science®Google Scholar Duc, N. M. “Farmers' Satisfaction with Aquaculture—A Logistic Model in Vietnam.” Ecological Economics, 68(1–2), 525– 531. 2008. CrossrefWeb of Science®Google Scholar Dunham, W. Journey Through Genius. John Wiley & Sons, New York. 1990. Google Scholar Dunham, W. Euler: The Master of Us All. Number 22 in Dolciani Mathematical Expositions. Math. Assoc. of America, Washington, DC. 1999. Google Scholar Dunham, W. The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press, Princeton, NJ. 2008. Google Scholar Dunnington, G. W. Gauss: Titan of Science. Math. Assoc. of America, Washington, DC. 2004. Google Scholar Ellis, W., Bauldry, W., Fiedler, J., Giordano, F., Judson, P., Lodi, E., Vitray, R., & West, R. Calculus: Mathematics and Modeling. Addison-Wesley, Reading, MA, revised preliminary edition. 1999. Google Scholar Farand, S. M. & Poxon, N. J. Calculus. Harcourt Brace College Outline Series. Harcourt, San Diego, CA. 1984. Google Scholar Finney, R., Demana, F., Waits, B., & Kennedy, D. Calculus. Addison-Wesley, Reading, MA. 1999. Google Scholar Fourier, J. The Analytical Theory of Heat. Dover, New York. 1822, 2003. Unabridged republication of the 1878 translation. Google Scholar Gaughan, E. D., Pengelley, D. J., Knoebel, A., & Kurtz, D. Student Research Projects in Calculus. Math. Assoc. of America, Washington, DC. 1991. Google Scholar Giordano, F. R., Hass, J., & Weir, M. D. Thomas' Calculus. Addison-Wesley, Reading, MA. 2005. Google Scholar Grabiner, J. V. “ The Changing Concept of Change,” chapter in H. N. Jahnke (ed.) Sherlock Holmes in Babylon and Other Tales of Mathematical History, pp. 218– 227. Math. Assoc. of America, Washington, DC. 2004. CrossrefGoogle Scholar Gradshteyn, I. S. & Ryzhik, I. M. Table of Integrals, Series, and Products. Academic Press, San Diego, CA, 7th edition. 2007. Google Scholar Granville, W. A., Smith, P. F., & Longley, W. R. Elements of the Differential and Integral Calculus. Ginn and Co., Boston. 1911. Google Scholar Hairer, E. & Wanner, G. Analysis by Its History. Springer-Verlag, New York. 1996. Google Scholar Hawkins, T. Lebesgue's Theory of Integration: Its Origins and Development. AMS Chelsea Pub./Amer Math. Soc., New York, 2nd edition. 2002. Google Scholar Heide, T. “ History of Mathematics and the Teacher,” chapter in R. Calinger (ed.) Vita Mathematica: Historical Research and Integration with Teaching, pp. 241– 243. Number 40 in MAA Notes. Math. Assoc. of America, Washington, DC. 1996. Web of Science®Google Scholar Herman, R. A., Scherer, P. N., & Shan, G. “Evaluation of Logistic and Polynomial Models for Fitting Sandwich-ELISA Calibration Curves.” Journal of Immunological Methods, 339(2), 245– 258. 2008. CrossrefCASPubMedWeb of Science®Google Scholar Hjouj, F. & King, R. “Problem AY-1.” AMATYC Review, 29(1), 81. 2007. PubMedGoogle Scholar Hochkirchen, T. “ Theory of Measure and Integration from Riemann to Lebesgue,” chapter in H. N. Jahnke (ed.) Sherlock Holmes in Babylon and Other Tales of Mathematical History, pp. 261– 290. Math. Assoc. of America, Washington, DC. 2004. Google Scholar Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., Flath, D. E., Lock, P. F., Tucker, T. W., Lomen, D. O., Lovelock, D., Mumford, D., Osgood, B. G., Quinney, D., Rhea, K., & Tecosky-Feldman, J. Calculus: Single and Multivariable. John Wiley & Sons, New York, 5th edition. 2009. Google Scholar Jackson, D. Fourier Series and Orthogonal Polynomials. Carus Monographs. Math. Assoc. of America, Washington, DC. 1941. Dover edition, Dover, 2004. Google Scholar Kahane, J.-P. “A Century of Interplay Between Taylor Series, Fourier Series and Brownian Motion.” Bulletin of the London Mathematical Society, 29(03), 257– 279. 2000. Wiley Online LibraryWeb of Science®Google Scholar Kasper, T. “Integration in Finite Terms: The Liouville Theory.” Mathematics Magazine, 53(4), 195– 201. 1980. CrossrefGoogle Scholar Katz, V. J. & Michelowicz, K. D. Historical Modules for the Teaching and Learning of Secondary Mathematics (CD). Math. Assoc. of America, Washington, DC. 2002. Google Scholar Kleiner, I. “Evolution of the Function Concept: A Brief Survey.” The College Mathematics Journal, 20(4), 282– 300. 1989. CrossrefGoogle Scholar Körner, T. W. Fourier Analysis. Cambridge University Press, Cambridge, UK. 1989. Google Scholar Kosmala, W. A. J. A Friendly Introduction to Analysis. Prentice Hall, Upper Saddle River, NJ, 2nd edition. 2004. Google Scholar Kuhn, S. “The Derivative a la Carathéodory.” The American Mathematical Monthly, 98(1), 40– 44. 1991. CrossrefWeb of Science®Google Scholar Lagrange, J. L. Théorie Des Fonctions Analytiques. Imprimerie de la République, Paris. 1797. Available online at http://books.google.com/books?id=15IKAAAAYAAJ. Google Scholar Littlewood, J. E. Lectures on the Theory of Functions. Oxford Univ. Press, London. 1944. Google Scholar Ma, L. Knowing and Teaching Elementary Mathematics. Lawrence Erlbaum Associates, Mahwah, NJ. 1999. Google Scholar Malthus, T. R. An Essay on the Principle of Population. John Murray, London, 6th edition. 1826. Available online at http://www.econlib.org/library/Malthus/malPlong.html. Google Scholar Marchisotto, E. A. & Zakeri, G.-A. “An Invitation to Integration in Finite Terms.” The College Mathematics Journal, 25(4), 295– 308. 1994. CrossrefGoogle Scholar Michener, E. R. “Understanding Understanding Mathematics.” Cognitive Science, 2, 361– 383. 1978. Wiley Online LibraryGoogle Scholar Moore, L. & Smith, D. “Calculus: Modeling and Application.” 2004. Available online at http://www.math.duke.edu/education/calculustext/. Google Scholar Moritz, R. E. On Mathematics and Mathematicians. Dover, New York. 1958. Available online at http://ia331305.us.archive.org/3/items/onmathematicsand017018mbp/onmathematicsand017018mbp.pdf. Google Scholar Newman, J. R. The World Of Mathematics, volume 1. Simon & Schuster, New York. 1956. Google Scholar O'Connor, J. J. & Robertson, E. F. “The MacTutor History of Mathematics Archive.” 2008. Available online at http://www-gap.dcs.st-and.ac.uk/∼history/. Google Scholar Ostebee, A. & Zorn, P. Calculus from Graphical, Numerical, and Symbolic Points of View. Brooks/Cole, Pacific Grove, CA, 2nd edition. 2002. Google Scholar Packel, E. W. & Wagon, S. Animating Calculus: Mathematica Notebooks for the Laboratory. TELOS, Santa Clara, CA. 1997. Google Scholar Pearl, R., Reed, L. J., & Kish, J. F. “The Logistic Curve and the Census Count of 1940.” Science, New Series, 92(2395), 486– 488. 1940. CASGoogle Scholar Peleg, M., Corradini, M. G., & Normand, M. D. “The Logistic (Verhulst) Model for Sigmoid Microbial Growth Curves Revisited.” Food Research International, 40(7), 808– 818. 2007. CrossrefWeb of Science®Google Scholar Polya, G. Mathematical Discovery, volume 1. John Wiley & Sons, New York. 1962. Google Scholar Rainville, E. D. Special Functions. Chelsea, New York. 1971. Google Scholar Richardson, D. “Some Undecidable Problems Involving Elementary Functions of a Real Variable.” The Journal of Symbolic Logic, 33(4), 514– 520. 1968. CrossrefWeb of Science®Google Scholar Risch, R. H. “The Problem of Integration in Finite Terms.” Transactions of the American Mathematical Society, 139, 167– 189. 1969. CrossrefWeb of Science®Google Scholar Royden, H. Real Analysis. Macmillan, New York, 3rd edition. 1988. Google Scholar Rudin, W. Principles of Mathematical Analysis. McGraw-Hill, New York, 3rd edition. 1976. Google Scholar Shakarchi, R. & Lang, S. Problems and Solutions for Undergraduate Analysis. Springer, New York. 1997. Google Scholar Shulman, B. “Math-Alive! Using Original Sources To Teach Mathematics in Social Context.” PRIMUS, 8(1), 1– 14. 1998. CrossrefGoogle Scholar Snow, J. E. & Weller, K. E. Exploratory Examples for Real Analysis. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 2007. Google Scholar Solow, A. E. & Fink, J. B. Learning by Discovery. Number 27 in MAA Notes. Math. Assoc. of America, Washington, DC. 1993. Google Scholar Stewart, J. Calculus. Thomson Brooks/Cole, Pacific Grove, CA, 6th edition. 2009. Google Scholar Stillwell, J. Mathematics and Its History. Springer-Verlag, New York. 1989. CrossrefGoogle Scholar Stroyan, K. D. Projects for Calculus: The Language of Change. Academic Press, San Diego, CA. 1998. Google Scholar D. J. Struik (ed.). A Source Book in Mathematics, 1200–1800. Princeton University Press, Princeton, NJ. 1986. Google Scholar Thomas, G. B. Calculus and Analytic Geometry. Addison-Wesley, Reading, MA, 4th edition. 1968. Google Scholar Underwood, N. “Variation in and Correlation between Intrinsic Rate of Increase and Carrying Capacity.” The American Naturalist, 169(1), 136– 141. 2007. CrossrefPubMedWeb of Science®Google Scholar Verhulst, P. F. “Notice sur la loi que la population poursuit dans son accroissement.” Correspondance mathématique et physique, X, 113– 121. 1838. English translation by Vogels et al, J. Biol. Phys. 3, 183–192, 1975. Google Scholar Verhulst, P. F. “Recherches mathématiques sur la loi d'accroisement de la population.” Mem. Acad. R. Bruxelles, 18, 1– 58. 1844. Google Scholar Vitali, G. Sul problema della misura dei gruppi di punti di una retta. Tip. Gamberini e Parmeggiani, Bologna, IT. 1905. Google Scholar Woods, R. G. Calculus Mysteries and Thrillers. Classroom Resource Materials. Math. Assoc. of America, Washington, DC. 1999. Google Scholar Wrede, R. C. & Spiegel, M. R. Schaum's Outline of Advanced Calculus. Schaum's Outlines. McGraw-Hill, New York. 2002. Google Scholar Zwillinger, D. Handbook of Integration. Jones and Bartlett, Boston. 1992. CrossrefGoogle Scholar D. Zwillinger (ed.). CRC Standard Mathematical Tables and Formuló. CRC Press, Boca Raton, FL, 31st edition. 2002. Google Scholar Introduction to Real Analysis: An Educational Approach ReferencesRelatedInformation" @default.
- W4212908906 created "2022-02-24" @default.
- W4212908906 date "2009-06-25" @default.
- W4212908906 modified "2023-09-29" @default.
- W4212908906 title "Bibliography" @default.
- W4212908906 cites W1511890760 @default.
- W4212908906 cites W1977517097 @default.
- W4212908906 cites W2016805415 @default.
- W4212908906 cites W2018411089 @default.
- W4212908906 cites W2031884298 @default.
- W4212908906 cites W2046407158 @default.
- W4212908906 cites W2058522198 @default.
- W4212908906 cites W2063402394 @default.
- W4212908906 cites W2079081398 @default.
- W4212908906 cites W2079862358 @default.
- W4212908906 cites W2085354791 @default.
- W4212908906 cites W2140443967 @default.
- W4212908906 cites W2163736028 @default.
- W4212908906 cites W2485089179 @default.
- W4212908906 cites W2795886190 @default.
- W4212908906 cites W2797024667 @default.
- W4212908906 cites W3048890841 @default.
- W4212908906 cites W3119059448 @default.
- W4212908906 cites W4210905880 @default.
- W4212908906 cites W4214939319 @default.
- W4212908906 cites W4232407240 @default.
- W4212908906 cites W4235977993 @default.
- W4212908906 cites W4238490854 @default.
- W4212908906 cites W4238770553 @default.
- W4212908906 cites W4239087050 @default.
- W4212908906 cites W4239268461 @default.
- W4212908906 cites W4240227820 @default.
- W4212908906 cites W4245062753 @default.
- W4212908906 cites W4246266336 @default.
- W4212908906 cites W4247287532 @default.
- W4212908906 cites W4248872392 @default.
- W4212908906 cites W4249051337 @default.
- W4212908906 cites W4252495111 @default.
- W4212908906 cites W4252979798 @default.
- W4212908906 cites W4256694603 @default.
- W4212908906 cites W4299935099 @default.
- W4212908906 cites W4242337084 @default.
- W4212908906 doi "https://doi.org/10.1002/9781118164419.biblio" @default.
- W4212908906 hasPublicationYear "2009" @default.
- W4212908906 type Work @default.
- W4212908906 citedByCount "0" @default.
- W4212908906 crossrefType "other" @default.
- W4212908906 hasBestOaLocation W42129089061 @default.
- W4212908906 hasConcept C41008148 @default.
- W4212908906 hasConceptScore W4212908906C41008148 @default.
- W4212908906 hasLocation W42129089061 @default.
- W4212908906 hasOpenAccess W4212908906 @default.
- W4212908906 hasPrimaryLocation W42129089061 @default.
- W4212908906 hasRelatedWork W1596801655 @default.
- W4212908906 hasRelatedWork W2130043461 @default.
- W4212908906 hasRelatedWork W2350741829 @default.
- W4212908906 hasRelatedWork W2358668433 @default.
- W4212908906 hasRelatedWork W2376932109 @default.
- W4212908906 hasRelatedWork W2382290278 @default.
- W4212908906 hasRelatedWork W2390279801 @default.
- W4212908906 hasRelatedWork W2748952813 @default.
- W4212908906 hasRelatedWork W2899084033 @default.
- W4212908906 hasRelatedWork W2530322880 @default.
- W4212908906 isParatext "false" @default.
- W4212908906 isRetracted "false" @default.
- W4212908906 workType "other" @default.