Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212912247> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4212912247 abstract "Variations in high-sensitivity cardiac troponin I by age and sex along with various sampling times can make the evaluation for acute myocardial infarction (AMI) challenging. Machine learning integrates these variables to allow a more accurate evaluation for possible AMI. The goal was to test the diagnostic and prognostic utility of a machine learning algorithm in the evaluation of possible AMI. We applied a machine learning algorithm (myocardial-ischemic-injury-index [MI3]) that incorporates age, sex, and high-sensitivity cardiac troponin I levels at time 0 and 30 minutes in 529 patients evaluated for possible AMI in a single urban emergency department. MI3 generates an index value from 0 to 100 reflecting the likelihood of AMI. Patients were followed at 30-45 days for major adverse cardiac events (MACEs). There were 42 (7.9%) patients that had an AMI. Patients were divided into 3 groups by the MI3 score: low-risk (≤ 3.13), intermediate-risk (> 3.13-51.0), and high-risk (> 51.0). The sensitivity for AMI was 100% with a MI3 value ≤ 3.13 and 353 (67%) ruled-out for AMI at 30 minutes. At 30-45 days, there were 2 (0.6%) MACEs (2 noncardiac deaths) in the low-risk group, in the intermediate-risk group 4 (3.0%) MACEs (3 AMIs, 1 cardiac death), and in the high-risk group 4 (9.1%) MACEs (4 AMIs, 2 cardiac deaths). The MI3 algorithm had 100% sensitivity for AMI at 30 minutes and identified a low-risk cohort who may be considered for early discharge." @default.
- W4212912247 created "2022-02-24" @default.
- W4212912247 creator A5019302426 @default.
- W4212912247 creator A5043218317 @default.
- W4212912247 creator A5055606321 @default.
- W4212912247 creator A5062907074 @default.
- W4212912247 creator A5072660411 @default.
- W4212912247 creator A5073689812 @default.
- W4212912247 creator A5083247932 @default.
- W4212912247 date "2022-02-21" @default.
- W4212912247 modified "2023-09-29" @default.
- W4212912247 title "Machine Learning to Assess for Acute Myocardial Infarction within 30 Minutes" @default.
- W4212912247 doi "https://doi.org/10.1097/hpc.0000000000000281" @default.
- W4212912247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35190507" @default.
- W4212912247 hasPublicationYear "2022" @default.
- W4212912247 type Work @default.
- W4212912247 citedByCount "1" @default.
- W4212912247 countsByYear W42129122472023 @default.
- W4212912247 crossrefType "journal-article" @default.
- W4212912247 hasAuthorship W4212912247A5019302426 @default.
- W4212912247 hasAuthorship W4212912247A5043218317 @default.
- W4212912247 hasAuthorship W4212912247A5055606321 @default.
- W4212912247 hasAuthorship W4212912247A5062907074 @default.
- W4212912247 hasAuthorship W4212912247A5072660411 @default.
- W4212912247 hasAuthorship W4212912247A5073689812 @default.
- W4212912247 hasAuthorship W4212912247A5083247932 @default.
- W4212912247 hasConcept C118552586 @default.
- W4212912247 hasConcept C119857082 @default.
- W4212912247 hasConcept C12174686 @default.
- W4212912247 hasConcept C126322002 @default.
- W4212912247 hasConcept C164705383 @default.
- W4212912247 hasConcept C194828623 @default.
- W4212912247 hasConcept C2780724011 @default.
- W4212912247 hasConcept C36036425 @default.
- W4212912247 hasConcept C38652104 @default.
- W4212912247 hasConcept C41008148 @default.
- W4212912247 hasConcept C500558357 @default.
- W4212912247 hasConcept C58471807 @default.
- W4212912247 hasConcept C71924100 @default.
- W4212912247 hasConcept C72563966 @default.
- W4212912247 hasConceptScore W4212912247C118552586 @default.
- W4212912247 hasConceptScore W4212912247C119857082 @default.
- W4212912247 hasConceptScore W4212912247C12174686 @default.
- W4212912247 hasConceptScore W4212912247C126322002 @default.
- W4212912247 hasConceptScore W4212912247C164705383 @default.
- W4212912247 hasConceptScore W4212912247C194828623 @default.
- W4212912247 hasConceptScore W4212912247C2780724011 @default.
- W4212912247 hasConceptScore W4212912247C36036425 @default.
- W4212912247 hasConceptScore W4212912247C38652104 @default.
- W4212912247 hasConceptScore W4212912247C41008148 @default.
- W4212912247 hasConceptScore W4212912247C500558357 @default.
- W4212912247 hasConceptScore W4212912247C58471807 @default.
- W4212912247 hasConceptScore W4212912247C71924100 @default.
- W4212912247 hasConceptScore W4212912247C72563966 @default.
- W4212912247 hasLocation W42129122471 @default.
- W4212912247 hasLocation W42129122472 @default.
- W4212912247 hasOpenAccess W4212912247 @default.
- W4212912247 hasPrimaryLocation W42129122471 @default.
- W4212912247 hasRelatedWork W2026095104 @default.
- W4212912247 hasRelatedWork W2062502632 @default.
- W4212912247 hasRelatedWork W2084334850 @default.
- W4212912247 hasRelatedWork W2142993747 @default.
- W4212912247 hasRelatedWork W2415202147 @default.
- W4212912247 hasRelatedWork W2930880598 @default.
- W4212912247 hasRelatedWork W3016959066 @default.
- W4212912247 hasRelatedWork W3041069482 @default.
- W4212912247 hasRelatedWork W3203913864 @default.
- W4212912247 hasRelatedWork W4319313949 @default.
- W4212912247 hasVolume "Publish Ahead of Print" @default.
- W4212912247 isParatext "false" @default.
- W4212912247 isRetracted "false" @default.
- W4212912247 workType "article" @default.