Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212914324> ?p ?o ?g. }
- W4212914324 endingPage "102" @default.
- W4212914324 startingPage "77" @default.
- W4212914324 abstract "Summary This chapter discusses different types of metalearning models, including regression, classification and relative performance models. Regression models use a suitable regression algorithm, which is trained on the metadata and used to predict the performance of given base-level algorithms. The predictions can in turn be used to order the base-level algorithms and hence identify the best one. These models also play an important role in the search for the potentially best hyperparameter configuration discussed in the next chapter. Classification models identify which base-level algorithms are applicable or non-applicable to the target classification task. Probabilistic classifiers can be used to construct a ranking of potentially useful alternatives. Relative performance models exploit information regarding the relative performance of base-level models, which can be either in the form of rankings or pairwise comparisons. This chapter discusses various methods that use this information in the search for the potentially best algorithm for the target task." @default.
- W4212914324 created "2022-02-24" @default.
- W4212914324 creator A5009236758 @default.
- W4212914324 creator A5016794035 @default.
- W4212914324 creator A5058183984 @default.
- W4212914324 creator A5074059438 @default.
- W4212914324 date "2022-01-01" @default.
- W4212914324 modified "2023-10-09" @default.
- W4212914324 title "Metalearning Approaches for Algorithm Selection II" @default.
- W4212914324 cites W1494580925 @default.
- W4212914324 cites W1501793257 @default.
- W4212914324 cites W1504618398 @default.
- W4212914324 cites W1512747601 @default.
- W4212914324 cites W1517567737 @default.
- W4212914324 cites W1531743498 @default.
- W4212914324 cites W1535039099 @default.
- W4212914324 cites W1558866804 @default.
- W4212914324 cites W1604262624 @default.
- W4212914324 cites W1638732406 @default.
- W4212914324 cites W1670263352 @default.
- W4212914324 cites W1763644767 @default.
- W4212914324 cites W1925504357 @default.
- W4212914324 cites W1994326354 @default.
- W4212914324 cites W202978992 @default.
- W4212914324 cites W2086886584 @default.
- W4212914324 cites W2102539288 @default.
- W4212914324 cites W2108626634 @default.
- W4212914324 cites W2118789407 @default.
- W4212914324 cites W2141919030 @default.
- W4212914324 cites W2145955992 @default.
- W4212914324 cites W2152646512 @default.
- W4212914324 cites W2157686535 @default.
- W4212914324 cites W2167467747 @default.
- W4212914324 cites W2234598170 @default.
- W4212914324 cites W2604867865 @default.
- W4212914324 cites W2768408766 @default.
- W4212914324 cites W2964281761 @default.
- W4212914324 cites W4211049957 @default.
- W4212914324 cites W4246635279 @default.
- W4212914324 cites W51251913 @default.
- W4212914324 doi "https://doi.org/10.1007/978-3-030-67024-5_5" @default.
- W4212914324 hasPublicationYear "2022" @default.
- W4212914324 type Work @default.
- W4212914324 citedByCount "0" @default.
- W4212914324 crossrefType "book-chapter" @default.
- W4212914324 hasAuthorship W4212914324A5009236758 @default.
- W4212914324 hasAuthorship W4212914324A5016794035 @default.
- W4212914324 hasAuthorship W4212914324A5058183984 @default.
- W4212914324 hasAuthorship W4212914324A5074059438 @default.
- W4212914324 hasBestOaLocation W42129143241 @default.
- W4212914324 hasConcept C105795698 @default.
- W4212914324 hasConcept C11413529 @default.
- W4212914324 hasConcept C119857082 @default.
- W4212914324 hasConcept C124101348 @default.
- W4212914324 hasConcept C127413603 @default.
- W4212914324 hasConcept C134306372 @default.
- W4212914324 hasConcept C154945302 @default.
- W4212914324 hasConcept C165696696 @default.
- W4212914324 hasConcept C184898388 @default.
- W4212914324 hasConcept C189430467 @default.
- W4212914324 hasConcept C201995342 @default.
- W4212914324 hasConcept C2780451532 @default.
- W4212914324 hasConcept C33923547 @default.
- W4212914324 hasConcept C38652104 @default.
- W4212914324 hasConcept C41008148 @default.
- W4212914324 hasConcept C42058472 @default.
- W4212914324 hasConcept C49937458 @default.
- W4212914324 hasConcept C81917197 @default.
- W4212914324 hasConcept C83546350 @default.
- W4212914324 hasConcept C8642999 @default.
- W4212914324 hasConcept C93959086 @default.
- W4212914324 hasConceptScore W4212914324C105795698 @default.
- W4212914324 hasConceptScore W4212914324C11413529 @default.
- W4212914324 hasConceptScore W4212914324C119857082 @default.
- W4212914324 hasConceptScore W4212914324C124101348 @default.
- W4212914324 hasConceptScore W4212914324C127413603 @default.
- W4212914324 hasConceptScore W4212914324C134306372 @default.
- W4212914324 hasConceptScore W4212914324C154945302 @default.
- W4212914324 hasConceptScore W4212914324C165696696 @default.
- W4212914324 hasConceptScore W4212914324C184898388 @default.
- W4212914324 hasConceptScore W4212914324C189430467 @default.
- W4212914324 hasConceptScore W4212914324C201995342 @default.
- W4212914324 hasConceptScore W4212914324C2780451532 @default.
- W4212914324 hasConceptScore W4212914324C33923547 @default.
- W4212914324 hasConceptScore W4212914324C38652104 @default.
- W4212914324 hasConceptScore W4212914324C41008148 @default.
- W4212914324 hasConceptScore W4212914324C42058472 @default.
- W4212914324 hasConceptScore W4212914324C49937458 @default.
- W4212914324 hasConceptScore W4212914324C81917197 @default.
- W4212914324 hasConceptScore W4212914324C83546350 @default.
- W4212914324 hasConceptScore W4212914324C8642999 @default.
- W4212914324 hasConceptScore W4212914324C93959086 @default.
- W4212914324 hasLocation W42129143241 @default.
- W4212914324 hasOpenAccess W4212914324 @default.
- W4212914324 hasPrimaryLocation W42129143241 @default.
- W4212914324 hasRelatedWork W2752852504 @default.
- W4212914324 hasRelatedWork W3199608561 @default.
- W4212914324 hasRelatedWork W4210794429 @default.