Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212922921> ?p ?o ?g. }
- W4212922921 endingPage "772" @default.
- W4212922921 startingPage "753" @default.
- W4212922921 abstract "The COVID-19 virus mutates in many different variants after its outbreak. Although several vaccines have been developed by many countries and implemented worldwide, it is difficult to prevent the outbreaks due to the pops out of different variants from its regular mutations. This study is an attempt to develop models which could precisely forecast the COVID-19 outbreaks in Bangladesh. In this study, we have developed a SEIRD based machine learning model to forecast the next possible one year outbreaks scenario in this country. We have tested the accuracy of this model by fitting the results with the considered historical data from March 08, 2020 to October 14, 2021. Also, we have validated this model by predicting the future inside the existing dataset, which is almost similar to the real dataset. It is observed that the final future forecasting results are very realistic compared to the current outbreak situation. Additionally, we have shown that the classical SEIRD model cannot predict the COVID-19 future outbreaks even it does not fit with the real datasets of outbreaks. Moreover, another machine learning time series forecasting model, FBProphet, has been implemented to forecast the future outbreaks of Bangladesh. Finally, we have analyzed and compared the forecasting results and hence identify the limitations of the proposed models which can improve future research in this field." @default.
- W4212922921 created "2022-02-24" @default.
- W4212922921 creator A5013200594 @default.
- W4212922921 creator A5014006084 @default.
- W4212922921 creator A5025841226 @default.
- W4212922921 creator A5057299766 @default.
- W4212922921 creator A5073639479 @default.
- W4212922921 creator A5075769890 @default.
- W4212922921 creator A5086123182 @default.
- W4212922921 creator A5088515045 @default.
- W4212922921 date "2022-02-21" @default.
- W4212922921 modified "2023-09-23" @default.
- W4212922921 title "The mathematical and machine learning models to forecast the COVID-19 outbreaks in Bangladesh" @default.
- W4212922921 cites W2137797572 @default.
- W4212922921 cites W2161728228 @default.
- W4212922921 cites W2725216843 @default.
- W4212922921 cites W3008028633 @default.
- W4212922921 cites W3009468976 @default.
- W4212922921 cites W3011771926 @default.
- W4212922921 cites W3015619547 @default.
- W4212922921 cites W3016540417 @default.
- W4212922921 cites W3017086479 @default.
- W4212922921 cites W3017843887 @default.
- W4212922921 cites W3018422079 @default.
- W4212922921 cites W3018782651 @default.
- W4212922921 cites W3022163878 @default.
- W4212922921 cites W3022605724 @default.
- W4212922921 cites W3029564028 @default.
- W4212922921 cites W3031202572 @default.
- W4212922921 cites W3036356470 @default.
- W4212922921 cites W3038524942 @default.
- W4212922921 cites W3043758161 @default.
- W4212922921 cites W3090404094 @default.
- W4212922921 cites W3092566573 @default.
- W4212922921 cites W3095705067 @default.
- W4212922921 cites W3096264622 @default.
- W4212922921 cites W3098103338 @default.
- W4212922921 cites W3109283457 @default.
- W4212922921 cites W3118251548 @default.
- W4212922921 cites W3119671147 @default.
- W4212922921 cites W3130323624 @default.
- W4212922921 cites W3137784896 @default.
- W4212922921 cites W3137896786 @default.
- W4212922921 cites W3157081302 @default.
- W4212922921 cites W3165479483 @default.
- W4212922921 cites W3167832379 @default.
- W4212922921 cites W3171533979 @default.
- W4212922921 cites W3174720288 @default.
- W4212922921 cites W3180761123 @default.
- W4212922921 cites W3184589578 @default.
- W4212922921 cites W3200829076 @default.
- W4212922921 cites W3202529270 @default.
- W4212922921 cites W3207148767 @default.
- W4212922921 cites W3208026655 @default.
- W4212922921 cites W4247378692 @default.
- W4212922921 doi "https://doi.org/10.1080/09720502.2021.2015095" @default.
- W4212922921 hasPublicationYear "2022" @default.
- W4212922921 type Work @default.
- W4212922921 citedByCount "3" @default.
- W4212922921 countsByYear W42129229212022 @default.
- W4212922921 countsByYear W42129229212023 @default.
- W4212922921 crossrefType "journal-article" @default.
- W4212922921 hasAuthorship W4212922921A5013200594 @default.
- W4212922921 hasAuthorship W4212922921A5014006084 @default.
- W4212922921 hasAuthorship W4212922921A5025841226 @default.
- W4212922921 hasAuthorship W4212922921A5057299766 @default.
- W4212922921 hasAuthorship W4212922921A5073639479 @default.
- W4212922921 hasAuthorship W4212922921A5075769890 @default.
- W4212922921 hasAuthorship W4212922921A5086123182 @default.
- W4212922921 hasAuthorship W4212922921A5088515045 @default.
- W4212922921 hasConcept C116675565 @default.
- W4212922921 hasConcept C119857082 @default.
- W4212922921 hasConcept C142724271 @default.
- W4212922921 hasConcept C149782125 @default.
- W4212922921 hasConcept C154945302 @default.
- W4212922921 hasConcept C159047783 @default.
- W4212922921 hasConcept C202444582 @default.
- W4212922921 hasConcept C2779134260 @default.
- W4212922921 hasConcept C3007834351 @default.
- W4212922921 hasConcept C3008058167 @default.
- W4212922921 hasConcept C33923547 @default.
- W4212922921 hasConcept C41008148 @default.
- W4212922921 hasConcept C42475967 @default.
- W4212922921 hasConcept C524204448 @default.
- W4212922921 hasConcept C71924100 @default.
- W4212922921 hasConcept C9652623 @default.
- W4212922921 hasConceptScore W4212922921C116675565 @default.
- W4212922921 hasConceptScore W4212922921C119857082 @default.
- W4212922921 hasConceptScore W4212922921C142724271 @default.
- W4212922921 hasConceptScore W4212922921C149782125 @default.
- W4212922921 hasConceptScore W4212922921C154945302 @default.
- W4212922921 hasConceptScore W4212922921C159047783 @default.
- W4212922921 hasConceptScore W4212922921C202444582 @default.
- W4212922921 hasConceptScore W4212922921C2779134260 @default.
- W4212922921 hasConceptScore W4212922921C3007834351 @default.
- W4212922921 hasConceptScore W4212922921C3008058167 @default.
- W4212922921 hasConceptScore W4212922921C33923547 @default.
- W4212922921 hasConceptScore W4212922921C41008148 @default.