Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212923710> ?p ?o ?g. }
- W4212923710 endingPage "1709" @default.
- W4212923710 startingPage "1696" @default.
- W4212923710 abstract "Knowing the redshift of galaxies is one of the first requirements of many cosmological experiments, and as it's impossible to perform spectroscopy for every galaxy being observed, photometric redshift (photo-z) estimations are still of particular interest. Here, we investigate different deep learning methods for obtaining photo-z estimates directly from images, comparing these with traditional machine learning algorithms which make use of magnitudes retrieved through photometry. As well as testing a convolutional neural network (CNN) and inception-module CNN, we introduce a novel mixed-input model which allows for both images and magnitude data to be used in the same model as a way of further improving the estimated redshifts. We also perform benchmarking as a way of demonstrating the performance and scalability of the different algorithms. The data used in the study comes entirely from the Sloan Digital Sky Survey (SDSS) from which 1 million galaxies were used, each having 5-filter (ugriz) images with complete photometry and a spectroscopic redshift which was taken as the ground truth. The mixed-input inception CNN achieved a mean squared error (MSE)=0.009, which was a significant improvement (30%) over the traditional Random Forest (RF), and the model performed even better at lower redshifts achieving a MSE=0.0007 (a 50% improvement over the RF) in the range of z<0.3. This method could be hugely beneficial to upcoming surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) which will require vast numbers of photo-z estimates produced as quickly and accurately as possible." @default.
- W4212923710 created "2022-02-24" @default.
- W4212923710 creator A5003444100 @default.
- W4212923710 creator A5008605990 @default.
- W4212923710 creator A5010290820 @default.
- W4212923710 creator A5056845870 @default.
- W4212923710 creator A5084238932 @default.
- W4212923710 date "2022-02-25" @default.
- W4212923710 modified "2023-10-15" @default.
- W4212923710 title "Deep learning methods for obtaining photometric redshift estimations from images" @default.
- W4212923710 cites W1896993123 @default.
- W4212923710 cites W1943306457 @default.
- W4212923710 cites W197865394 @default.
- W4212923710 cites W1995341919 @default.
- W4212923710 cites W2056132907 @default.
- W4212923710 cites W2101533953 @default.
- W4212923710 cites W2117731089 @default.
- W4212923710 cites W2134079305 @default.
- W4212923710 cites W2157917411 @default.
- W4212923710 cites W2167335950 @default.
- W4212923710 cites W2189948602 @default.
- W4212923710 cites W2227274187 @default.
- W4212923710 cites W2322672422 @default.
- W4212923710 cites W2623459029 @default.
- W4212923710 cites W2735860321 @default.
- W4212923710 cites W2808496877 @default.
- W4212923710 cites W2911964244 @default.
- W4212923710 cites W2919115771 @default.
- W4212923710 cites W2963076183 @default.
- W4212923710 cites W3046044278 @default.
- W4212923710 cites W3099186397 @default.
- W4212923710 cites W3099357154 @default.
- W4212923710 cites W3099878876 @default.
- W4212923710 cites W3101033813 @default.
- W4212923710 cites W3104062568 @default.
- W4212923710 cites W3107029590 @default.
- W4212923710 cites W3123261968 @default.
- W4212923710 cites W3125208953 @default.
- W4212923710 cites W3144130411 @default.
- W4212923710 cites W3162082109 @default.
- W4212923710 cites W3165898284 @default.
- W4212923710 cites W4231433580 @default.
- W4212923710 doi "https://doi.org/10.1093/mnras/stac480" @default.
- W4212923710 hasPublicationYear "2022" @default.
- W4212923710 type Work @default.
- W4212923710 citedByCount "9" @default.
- W4212923710 countsByYear W42129237102022 @default.
- W4212923710 countsByYear W42129237102023 @default.
- W4212923710 crossrefType "journal-article" @default.
- W4212923710 hasAuthorship W4212923710A5003444100 @default.
- W4212923710 hasAuthorship W4212923710A5008605990 @default.
- W4212923710 hasAuthorship W4212923710A5010290820 @default.
- W4212923710 hasAuthorship W4212923710A5056845870 @default.
- W4212923710 hasAuthorship W4212923710A5084238932 @default.
- W4212923710 hasBestOaLocation W42129237102 @default.
- W4212923710 hasConcept C108583219 @default.
- W4212923710 hasConcept C121332964 @default.
- W4212923710 hasConcept C1276947 @default.
- W4212923710 hasConcept C150846664 @default.
- W4212923710 hasConcept C154945302 @default.
- W4212923710 hasConcept C169258074 @default.
- W4212923710 hasConcept C2780974285 @default.
- W4212923710 hasConcept C2781109611 @default.
- W4212923710 hasConcept C33024259 @default.
- W4212923710 hasConcept C41008148 @default.
- W4212923710 hasConcept C44870925 @default.
- W4212923710 hasConcept C48044578 @default.
- W4212923710 hasConcept C68271606 @default.
- W4212923710 hasConcept C73329638 @default.
- W4212923710 hasConcept C77088390 @default.
- W4212923710 hasConcept C81363708 @default.
- W4212923710 hasConcept C98444146 @default.
- W4212923710 hasConceptScore W4212923710C108583219 @default.
- W4212923710 hasConceptScore W4212923710C121332964 @default.
- W4212923710 hasConceptScore W4212923710C1276947 @default.
- W4212923710 hasConceptScore W4212923710C150846664 @default.
- W4212923710 hasConceptScore W4212923710C154945302 @default.
- W4212923710 hasConceptScore W4212923710C169258074 @default.
- W4212923710 hasConceptScore W4212923710C2780974285 @default.
- W4212923710 hasConceptScore W4212923710C2781109611 @default.
- W4212923710 hasConceptScore W4212923710C33024259 @default.
- W4212923710 hasConceptScore W4212923710C41008148 @default.
- W4212923710 hasConceptScore W4212923710C44870925 @default.
- W4212923710 hasConceptScore W4212923710C48044578 @default.
- W4212923710 hasConceptScore W4212923710C68271606 @default.
- W4212923710 hasConceptScore W4212923710C73329638 @default.
- W4212923710 hasConceptScore W4212923710C77088390 @default.
- W4212923710 hasConceptScore W4212923710C81363708 @default.
- W4212923710 hasConceptScore W4212923710C98444146 @default.
- W4212923710 hasFunder F4320306076 @default.
- W4212923710 hasFunder F4320306084 @default.
- W4212923710 hasFunder F4320306151 @default.
- W4212923710 hasFunder F4320308380 @default.
- W4212923710 hasFunder F4320309151 @default.
- W4212923710 hasFunder F4320309290 @default.
- W4212923710 hasFunder F4320309292 @default.
- W4212923710 hasFunder F4320309374 @default.
- W4212923710 hasFunder F4320309622 @default.