Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212946592> ?p ?o ?g. }
- W4212946592 endingPage "e1009736" @default.
- W4212946592 startingPage "e1009736" @default.
- W4212946592 abstract "Machine learning with multi-layered artificial neural networks, also known as deep learning, is effective for making biological predictions. However, model interpretation is challenging, especially for sequential input data used with recurrent neural network architectures. Here, we introduce a framework called Positional SHAP (PoSHAP) to interpret models trained from biological sequences by utilizing SHapely Additive exPlanations (SHAP) to generate positional model interpretations. We demonstrate this using three long short-term memory (LSTM) regression models that predict peptide properties, including binding affinity to major histocompatibility complexes (MHC), and collisional cross section (CCS) measured by ion mobility spectrometry. Interpretation of these models with PoSHAP reproduced MHC class I (rhesus macaque Mamu-A1*001 and human A*11:01) peptide binding motifs, reflected known properties of peptide CCS, and provided new insights into interpositional dependencies of amino acid interactions. PoSHAP should have widespread utility for interpreting a variety of models trained from biological sequences." @default.
- W4212946592 created "2022-02-24" @default.
- W4212946592 creator A5067432674 @default.
- W4212946592 creator A5088820586 @default.
- W4212946592 date "2022-01-28" @default.
- W4212946592 modified "2023-10-03" @default.
- W4212946592 title "Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences" @default.
- W4212946592 cites W1498436455 @default.
- W4212946592 cites W1554093359 @default.
- W4212946592 cites W1611787727 @default.
- W4212946592 cites W1979319235 @default.
- W4212946592 cites W2010239849 @default.
- W4212946592 cites W2011301426 @default.
- W4212946592 cites W2012523084 @default.
- W4212946592 cites W2023795624 @default.
- W4212946592 cites W2053707749 @default.
- W4212946592 cites W2064675550 @default.
- W4212946592 cites W2067383372 @default.
- W4212946592 cites W2073621589 @default.
- W4212946592 cites W2075908603 @default.
- W4212946592 cites W2089345952 @default.
- W4212946592 cites W2101926813 @default.
- W4212946592 cites W2120223999 @default.
- W4212946592 cites W2125732073 @default.
- W4212946592 cites W2552513321 @default.
- W4212946592 cites W2608171249 @default.
- W4212946592 cites W2743893844 @default.
- W4212946592 cites W2749122933 @default.
- W4212946592 cites W2783102765 @default.
- W4212946592 cites W2884001105 @default.
- W4212946592 cites W2892741787 @default.
- W4212946592 cites W2908403765 @default.
- W4212946592 cites W2909834406 @default.
- W4212946592 cites W2911964244 @default.
- W4212946592 cites W2916873655 @default.
- W4212946592 cites W2919115771 @default.
- W4212946592 cites W2949949116 @default.
- W4212946592 cites W2950373774 @default.
- W4212946592 cites W2955152582 @default.
- W4212946592 cites W2959124424 @default.
- W4212946592 cites W2968494487 @default.
- W4212946592 cites W2995494055 @default.
- W4212946592 cites W2996870404 @default.
- W4212946592 cites W2999044305 @default.
- W4212946592 cites W2999515666 @default.
- W4212946592 cites W3005653329 @default.
- W4212946592 cites W3006621753 @default.
- W4212946592 cites W3015750191 @default.
- W4212946592 cites W3016273280 @default.
- W4212946592 cites W3018554363 @default.
- W4212946592 cites W3042910002 @default.
- W4212946592 cites W3102476541 @default.
- W4212946592 cites W3102818708 @default.
- W4212946592 cites W3129412675 @default.
- W4212946592 cites W3133209323 @default.
- W4212946592 cites W3161702043 @default.
- W4212946592 cites W3166235221 @default.
- W4212946592 cites W4210958064 @default.
- W4212946592 cites W4313355586 @default.
- W4212946592 doi "https://doi.org/10.1371/journal.pcbi.1009736" @default.
- W4212946592 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35089914" @default.
- W4212946592 hasPublicationYear "2022" @default.
- W4212946592 type Work @default.
- W4212946592 citedByCount "11" @default.
- W4212946592 countsByYear W42129465922022 @default.
- W4212946592 countsByYear W42129465922023 @default.
- W4212946592 crossrefType "journal-article" @default.
- W4212946592 hasAuthorship W4212946592A5067432674 @default.
- W4212946592 hasAuthorship W4212946592A5088820586 @default.
- W4212946592 hasBestOaLocation W42129465921 @default.
- W4212946592 hasConcept C108583219 @default.
- W4212946592 hasConcept C119857082 @default.
- W4212946592 hasConcept C154945302 @default.
- W4212946592 hasConcept C199360897 @default.
- W4212946592 hasConcept C2779175743 @default.
- W4212946592 hasConcept C41008148 @default.
- W4212946592 hasConcept C50644808 @default.
- W4212946592 hasConcept C527412718 @default.
- W4212946592 hasConcept C54355233 @default.
- W4212946592 hasConcept C70721500 @default.
- W4212946592 hasConcept C86803240 @default.
- W4212946592 hasConceptScore W4212946592C108583219 @default.
- W4212946592 hasConceptScore W4212946592C119857082 @default.
- W4212946592 hasConceptScore W4212946592C154945302 @default.
- W4212946592 hasConceptScore W4212946592C199360897 @default.
- W4212946592 hasConceptScore W4212946592C2779175743 @default.
- W4212946592 hasConceptScore W4212946592C41008148 @default.
- W4212946592 hasConceptScore W4212946592C50644808 @default.
- W4212946592 hasConceptScore W4212946592C527412718 @default.
- W4212946592 hasConceptScore W4212946592C54355233 @default.
- W4212946592 hasConceptScore W4212946592C70721500 @default.
- W4212946592 hasConceptScore W4212946592C86803240 @default.
- W4212946592 hasFunder F4320337354 @default.
- W4212946592 hasFunder F4320337372 @default.
- W4212946592 hasIssue "1" @default.
- W4212946592 hasLocation W42129465921 @default.
- W4212946592 hasLocation W42129465922 @default.
- W4212946592 hasLocation W42129465923 @default.