Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212963941> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4212963941 endingPage "33" @default.
- W4212963941 startingPage "28" @default.
- W4212963941 abstract "In order to support and supervise patients, the key detection and estimation of cancer type should establish a compulsion in the cancer research. Many research teams from the biomedical and bioinformatics fields have been advised to learn and evaluate the use of machine learning (ML) methods because of the relevance of classifying cancer patients into high or low risk clusters. To predict breast cancer, the logistic regression method and many classifiers have been proposed to generate profound predictions about breast cancer data in a new environment. This paper discusses the various approaches to data mining using classification to create deep predictions that can be applied to Breast Cancer data. In addition, by testing datasets on different classifiers, this analysis predicts the best model that delivers high efficiency. In this paper, the UCI machine learning repository has 699 instances with 11 attributes collected from the Breast cancer dataset. First, the data set is pre-processed, visualized and fed to different classifiers such as Logistic Regression, Support Vector Classifier, K-Nearest Neighbour, Decision Tree and Random Forest. 10-fold cross validation is implemented and testing is carried out in order to create and validate new models. Effective analysis shows that Logistic Regression generates the deep predictions of all classifiers and obtains the best model delivering strong and precise outcomes, followed by other methods: Support Vector Classifier, K-Nearest Neighbour, Decision Tree and Random Forest. Most models were less reliable compared to the approach of logistic regression." @default.
- W4212963941 created "2022-02-24" @default.
- W4212963941 creator A5046603726 @default.
- W4212963941 creator A5065479365 @default.
- W4212963941 creator A5073946962 @default.
- W4212963941 date "2021-03-30" @default.
- W4212963941 modified "2023-09-27" @default.
- W4212963941 title "PREDICTION OF BREAST CANCER USING MACHINE LEARNING" @default.
- W4212963941 doi "https://doi.org/10.26562/ijirae.2021.v0803.001" @default.
- W4212963941 hasPublicationYear "2021" @default.
- W4212963941 type Work @default.
- W4212963941 citedByCount "0" @default.
- W4212963941 crossrefType "journal-article" @default.
- W4212963941 hasAuthorship W4212963941A5046603726 @default.
- W4212963941 hasAuthorship W4212963941A5065479365 @default.
- W4212963941 hasAuthorship W4212963941A5073946962 @default.
- W4212963941 hasBestOaLocation W42129639411 @default.
- W4212963941 hasConcept C119857082 @default.
- W4212963941 hasConcept C121608353 @default.
- W4212963941 hasConcept C12267149 @default.
- W4212963941 hasConcept C124101348 @default.
- W4212963941 hasConcept C126322002 @default.
- W4212963941 hasConcept C151956035 @default.
- W4212963941 hasConcept C154945302 @default.
- W4212963941 hasConcept C169258074 @default.
- W4212963941 hasConcept C27181475 @default.
- W4212963941 hasConcept C41008148 @default.
- W4212963941 hasConcept C530470458 @default.
- W4212963941 hasConcept C71924100 @default.
- W4212963941 hasConcept C84525736 @default.
- W4212963941 hasConcept C95623464 @default.
- W4212963941 hasConceptScore W4212963941C119857082 @default.
- W4212963941 hasConceptScore W4212963941C121608353 @default.
- W4212963941 hasConceptScore W4212963941C12267149 @default.
- W4212963941 hasConceptScore W4212963941C124101348 @default.
- W4212963941 hasConceptScore W4212963941C126322002 @default.
- W4212963941 hasConceptScore W4212963941C151956035 @default.
- W4212963941 hasConceptScore W4212963941C154945302 @default.
- W4212963941 hasConceptScore W4212963941C169258074 @default.
- W4212963941 hasConceptScore W4212963941C27181475 @default.
- W4212963941 hasConceptScore W4212963941C41008148 @default.
- W4212963941 hasConceptScore W4212963941C530470458 @default.
- W4212963941 hasConceptScore W4212963941C71924100 @default.
- W4212963941 hasConceptScore W4212963941C84525736 @default.
- W4212963941 hasConceptScore W4212963941C95623464 @default.
- W4212963941 hasIssue "3" @default.
- W4212963941 hasLocation W42129639411 @default.
- W4212963941 hasOpenAccess W4212963941 @default.
- W4212963941 hasPrimaryLocation W42129639411 @default.
- W4212963941 hasRelatedWork W3127425528 @default.
- W4212963941 hasRelatedWork W4205958290 @default.
- W4212963941 hasRelatedWork W4212963941 @default.
- W4212963941 hasRelatedWork W4223632937 @default.
- W4212963941 hasRelatedWork W4246246790 @default.
- W4212963941 hasRelatedWork W4249229055 @default.
- W4212963941 hasRelatedWork W4281846282 @default.
- W4212963941 hasRelatedWork W4320483443 @default.
- W4212963941 hasRelatedWork W4321636153 @default.
- W4212963941 hasRelatedWork W4363674755 @default.
- W4212963941 hasVolume "8" @default.
- W4212963941 isParatext "false" @default.
- W4212963941 isRetracted "false" @default.
- W4212963941 workType "article" @default.