Matches in SemOpenAlex for { <https://semopenalex.org/work/W4212969511> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4212969511 endingPage "699" @default.
- W4212969511 startingPage "685" @default.
- W4212969511 abstract "AbstractThis research focuses on analysing the sentiments of people pertaining to severe periodic outbreaks of COVID-19 on two junctures – First Wave (Mar’20 & Apr’20) and Second Wave (Jun’21 & Jul’21)-since the first lockdown was undertaken with a view to curb the vicious spread of the lethal SARS-Cov-2 strain. Primarily, the objective is to analyse the public sentiment – as evident in the posted tweets - relating to the different phases of the pandemic, and to illuminate how keeping an eye on change in the tenor and tone of discussions can help government authorities and healthcare industry in raising awareness, reducing panic amongst citizens, and planning strategies to tackle the monumental crisis.Considering the daily volume of social media activity, in our project, we scoped to analyse the Tweets related to the two different pandemic stages – The First wave and the Second wave – by implementing Text Mining and Sentiment Analysis, subfields of Natural Language Processing. To manually extract tweets from the platform, we used Twitter API coupled with Python’s open-source package using a set of COVID-19-related keywords.Crucially, before finalising the project pipeline, we conducted a thorough secondary research to find the solutions and methodologies implemented in our area of interest. We listed the current works and attempted to plug the gaps in those via our experiment.We used several classification and boosting algorithms to create a framework to distinguish the textual data of the tweets. Relevant scope, limitations, and room for improvements have been discussed comprehensively in the upcoming sections.KeywordsText miningSentiment classificationCOVID 19Natural language processingTweet analysisTweepyTextBlob" @default.
- W4212969511 created "2022-02-24" @default.
- W4212969511 creator A5023477493 @default.
- W4212969511 creator A5044965749 @default.
- W4212969511 creator A5059876617 @default.
- W4212969511 creator A5080691676 @default.
- W4212969511 date "2022-01-01" @default.
- W4212969511 modified "2023-10-17" @default.
- W4212969511 title "Sentiment Classification and Comparison of Covid-19 Tweets During the First Wave and the Second Wave Using NLP Techniques and Libraries" @default.
- W4212969511 cites W1839863673 @default.
- W4212969511 cites W2591212729 @default.
- W4212969511 cites W2892021043 @default.
- W4212969511 cites W2906110516 @default.
- W4212969511 cites W2944815653 @default.
- W4212969511 cites W2998433004 @default.
- W4212969511 cites W3033624065 @default.
- W4212969511 cites W3047012519 @default.
- W4212969511 cites W3094733139 @default.
- W4212969511 cites W3096393000 @default.
- W4212969511 cites W3126164434 @default.
- W4212969511 cites W3134990902 @default.
- W4212969511 cites W3138653971 @default.
- W4212969511 cites W3146682110 @default.
- W4212969511 cites W3154098986 @default.
- W4212969511 cites W3162774132 @default.
- W4212969511 cites W3168865200 @default.
- W4212969511 cites W3172100389 @default.
- W4212969511 cites W3174955554 @default.
- W4212969511 doi "https://doi.org/10.1007/978-3-030-96299-9_65" @default.
- W4212969511 hasPublicationYear "2022" @default.
- W4212969511 type Work @default.
- W4212969511 citedByCount "0" @default.
- W4212969511 crossrefType "book-chapter" @default.
- W4212969511 hasAuthorship W4212969511A5023477493 @default.
- W4212969511 hasAuthorship W4212969511A5044965749 @default.
- W4212969511 hasAuthorship W4212969511A5059876617 @default.
- W4212969511 hasAuthorship W4212969511A5080691676 @default.
- W4212969511 hasConcept C136764020 @default.
- W4212969511 hasConcept C138885662 @default.
- W4212969511 hasConcept C142724271 @default.
- W4212969511 hasConcept C154945302 @default.
- W4212969511 hasConcept C2522767166 @default.
- W4212969511 hasConcept C2778137410 @default.
- W4212969511 hasConcept C2779134260 @default.
- W4212969511 hasConcept C3008058167 @default.
- W4212969511 hasConcept C41008148 @default.
- W4212969511 hasConcept C41895202 @default.
- W4212969511 hasConcept C518677369 @default.
- W4212969511 hasConcept C524204448 @default.
- W4212969511 hasConcept C66402592 @default.
- W4212969511 hasConcept C71924100 @default.
- W4212969511 hasConceptScore W4212969511C136764020 @default.
- W4212969511 hasConceptScore W4212969511C138885662 @default.
- W4212969511 hasConceptScore W4212969511C142724271 @default.
- W4212969511 hasConceptScore W4212969511C154945302 @default.
- W4212969511 hasConceptScore W4212969511C2522767166 @default.
- W4212969511 hasConceptScore W4212969511C2778137410 @default.
- W4212969511 hasConceptScore W4212969511C2779134260 @default.
- W4212969511 hasConceptScore W4212969511C3008058167 @default.
- W4212969511 hasConceptScore W4212969511C41008148 @default.
- W4212969511 hasConceptScore W4212969511C41895202 @default.
- W4212969511 hasConceptScore W4212969511C518677369 @default.
- W4212969511 hasConceptScore W4212969511C524204448 @default.
- W4212969511 hasConceptScore W4212969511C66402592 @default.
- W4212969511 hasConceptScore W4212969511C71924100 @default.
- W4212969511 hasLocation W42129695111 @default.
- W4212969511 hasOpenAccess W4212969511 @default.
- W4212969511 hasPrimaryLocation W42129695111 @default.
- W4212969511 hasRelatedWork W2243502667 @default.
- W4212969511 hasRelatedWork W2252197266 @default.
- W4212969511 hasRelatedWork W2412155161 @default.
- W4212969511 hasRelatedWork W2748952813 @default.
- W4212969511 hasRelatedWork W2889046623 @default.
- W4212969511 hasRelatedWork W3049681097 @default.
- W4212969511 hasRelatedWork W3112732766 @default.
- W4212969511 hasRelatedWork W3148756070 @default.
- W4212969511 hasRelatedWork W4205350312 @default.
- W4212969511 hasRelatedWork W63223808 @default.
- W4212969511 isParatext "false" @default.
- W4212969511 isRetracted "false" @default.
- W4212969511 workType "book-chapter" @default.